3,284 research outputs found

    Local Convergence of Proximal Splitting Methods for Rank Constrained Problems

    Full text link
    We analyze the local convergence of proximal splitting algorithms to solve optimization problems that are convex besides a rank constraint. For this, we show conditions under which the proximal operator of a function involving the rank constraint is locally identical to the proximal operator of its convex envelope, hence implying local convergence. The conditions imply that the non-convex algorithms locally converge to a solution whenever a convex relaxation involving the convex envelope can be expected to solve the non-convex problem.Comment: To be presented at the 56th IEEE Conference on Decision and Control, Melbourne, Dec 201

    On Quasi-Newton Forward--Backward Splitting: Proximal Calculus and Convergence

    Get PDF
    We introduce a framework for quasi-Newton forward--backward splitting algorithms (proximal quasi-Newton methods) with a metric induced by diagonal ±\pm rank-rr symmetric positive definite matrices. This special type of metric allows for a highly efficient evaluation of the proximal mapping. The key to this efficiency is a general proximal calculus in the new metric. By using duality, formulas are derived that relate the proximal mapping in a rank-rr modified metric to the original metric. We also describe efficient implementations of the proximity calculation for a large class of functions; the implementations exploit the piece-wise linear nature of the dual problem. Then, we apply these results to acceleration of composite convex minimization problems, which leads to elegant quasi-Newton methods for which we prove convergence. The algorithm is tested on several numerical examples and compared to a comprehensive list of alternatives in the literature. Our quasi-Newton splitting algorithm with the prescribed metric compares favorably against state-of-the-art. The algorithm has extensive applications including signal processing, sparse recovery, machine learning and classification to name a few.Comment: arXiv admin note: text overlap with arXiv:1206.115

    Forward-backward truncated Newton methods for convex composite optimization

    Full text link
    This paper proposes two proximal Newton-CG methods for convex nonsmooth optimization problems in composite form. The algorithms are based on a a reformulation of the original nonsmooth problem as the unconstrained minimization of a continuously differentiable function, namely the forward-backward envelope (FBE). The first algorithm is based on a standard line search strategy, whereas the second one combines the global efficiency estimates of the corresponding first-order methods, while achieving fast asymptotic convergence rates. Furthermore, they are computationally attractive since each Newton iteration requires the approximate solution of a linear system of usually small dimension

    Distributed Interior-point Method for Loosely Coupled Problems

    Full text link
    In this paper, we put forth distributed algorithms for solving loosely coupled unconstrained and constrained optimization problems. Such problems are usually solved using algorithms that are based on a combination of decomposition and first order methods. These algorithms are commonly very slow and require many iterations to converge. In order to alleviate this issue, we propose algorithms that combine the Newton and interior-point methods with proximal splitting methods for solving such problems. Particularly, the algorithm for solving unconstrained loosely coupled problems, is based on Newton's method and utilizes proximal splitting to distribute the computations for calculating the Newton step at each iteration. A combination of this algorithm and the interior-point method is then used to introduce a distributed algorithm for solving constrained loosely coupled problems. We also provide guidelines on how to implement the proposed methods efficiently and briefly discuss the properties of the resulting solutions.Comment: Submitted to the 19th IFAC World Congress 201

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem
    • …
    corecore