3,080 research outputs found

    Rational-spline approximation with automatic tension adjustment

    Get PDF
    An algorithm for weighted least-squares approximation with rational splines is presented. A rational spline is a cubic function containing a distinct tension parameter for each interval defined by two consecutive knots. For zero tension, the rational spline is identical to a cubic spline; for very large tension, the rational spline is a linear function. The approximation algorithm incorporates an algorithm which automatically adjusts the tension on each interval to fulfill a user-specified criterion. Finally, an example is presented comparing results of the rational spline with those of the cubic spline

    An algorithm for surface smoothing with rational splines

    Get PDF
    Discussed is an algorithm for smoothing surfaces with spline functions containing tension parameters. The bivariate spline functions used are tensor products of univariate rational-spline functions. A distinct tension parameter corresponds to each rectangular strip defined by a pair of consecutive spline knots along either axis. Equations are derived for writing the bivariate rational spline in terms of functions and derivatives at the knots. Estimates of these values are obtained via weighted least squares subject to continuity constraints at the knots. The algorithm is illustrated on a set of terrain elevation data

    Rational Spline with Interval and Point Tension

    Get PDF

    Isogeometric analysis applied to frictionless large deformation elastoplastic contact

    Get PDF
    This paper focuses on the application of isogeometric analysis to model frictionless large deformation contact between deformable bodies and rigid surfaces that may be represented by analytical functions. The contact constraints are satisfied exactly with the augmented Lagrangian method, and treated with a mortar-based approach combined with a simplified integration method to avoid segmentation of the contact surfaces. The spatial discretization of the deformable body is performed with NURBS and C0-continuous Lagrange polynomial elements. The numerical examples demonstrate that isogeometric surface discretization delivers more accurate and robust predictions of the response compared to Lagrange discretizations
    corecore