14,708 research outputs found

    Thermal Perception in Mild Climate: Adaptive Thermal Models for Schools

    Get PDF
    A comprehensive assessment of indoor environmental conditions is performed on a representative sample of classrooms in schools across southern Spain (Mediterranean climate) to evaluate the thermal comfort level, thermal perception and preference, and the relationship with HVAC systems, with a comparison of seasons and personal clothing. Almost fifty classrooms were studied and around one thousand pool-surveys distributed among their occupants, aged 12 to 17. These measurements were performed during spring, autumn, and winter, considered the most representative periods of use for schools. A new proposed protocol has been developed for the collection and subsequent analysis of data, applying thermal comfort indicators and using the most frequent predictive models, rational (RTC) and adaptive (ATC), for comparison. Cooling is not provided in any of the rooms and natural ventilation is found in most of the spaces during midseasons. Despite the existence of a general heating service in almost all classrooms in the cold period, the use of mechanical ventilation is limited. Heating did not usually provide standard set-point temperatures. However, this did not lead to widespread complaints, as occupants perceive the thermal environment as neutral—varying greatly between users—and show a preference for slightly colder environments. Comparison of these thermal comfort votes and the thermal comfort indicators used showed a better fit of thermal preference over thermal sensation and more reliable results when using regional ATC indicators than the ASHRAE adaptive model. This highlights the significance of inhabitants’ actual thermal perception. These findings provide useful insight for a more accurate design of this type of building, as well as a suitable tool for the improvement of existing spaces, improving the conditions for both comfort and wellbeing in these spaces, as well as providing a better fit of energy use for actual comfort conditions

    Heat waves and human well-being in Madrid (Spain)

    Full text link
    Heat waves pose additional risks to urban spaces because of the additional heat provided by urban heat islands (UHIs) as well as poorer air quality. Our study focuses on the analysis of UHIs, human thermal comfort, and air quality for the city of Madrid, Spain during heat waves. Heat wave periods are defined using the long-term records from the urban station Madrid-Retiro. Two types of UHI were studied: the canopy layer UHI (CLUHI) was evaluated using air temperature time-series from five meteorological stations; the surface UHI (SUHI) was derived from land surface temperature (LST) images from MODIS (Moderate Resolution Imaging Spectroradiometer) products. To assess human thermal comfort, the Physiological Equivalent Temperature (PET) index was applied. Air quality was analyzed from the records of two air quality networks. More frequent and longer heat waves have been observed since 1980; the nocturnal CLUHI and both the diurnal and nocturnal SUHI experience an intensification, which have led to an increasing number of tropical nights. Conversely, thermal stress is extreme by day in the city due to the lack of cooling by winds. Finally, air quality during heat waves deteriorates because of the higher than normal amount of particles arriving from Northern AfricaThis research was funded by the research project number CGL2016-80154-R “Análisis y modelización de eventos climáticos extremos en Madrid: olas de calor e inversiones térmicas” funded by Convocatoria 2016 de Proyectos de I+D+I, correspondientes al programa estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, from the Spanish Ministry of Educatio

    Building-integrated rooftop greenhouses: an energy and environmental assessment in the mediterranean context

    Get PDF
    A sustainable and secure food supply within a low-carbon and resilient infrastructure is encapsulated in several of The United Nations’ 17 sustainable development goals. The integration of urban agriculture in buildings can offer improved efficiencies; in recognition of this, the first south European example of a fully integrated rooftop greenhouse (iRTG) was designed and incorporated into the ICTA-ICP building by the Autonomous University of Barcelona. This design seeks to interchange heat, CO2 and rainwater between the building and its rooftop greenhouse. Average air temperatures for 2015 in the iRTG were 16.5 °C (winter) and 25.79 °C (summer), making the iRTG an ideal growing environment. Using detailed thermophysical fabric properties, 2015 site-specific weather data, exact control strategies and dynamic soil temperatures, the iRTG was modelled in EnergyPlus to assess the performance of an equivalent ‘freestanding’ greenhouse. The validated result shows that the thermal interchange between the iRTG and the ICTA-ICP building has considerable moderating effects on the iRTG’s indoor climate; since average hourly temperatures in an equivalent freestanding greenhouse would have been 4.1 °C colder in winter and 4.4 °C warmer in summer under the 2015 climatic conditions. The simulation results demonstrate that the iRTG case study recycled 43.78 MWh of thermal energy (or 341.93 kWh/m2/yr) from the main building in 2015. Assuming 100% energy conversion efficiency, compared to freestanding greenhouses heated with oil, gas or biomass systems, the iRTG delivered an equivalent carbon savings of 113.8, 82.4 or 5.5 kg CO2(eq)/m2/yr, respectively, and economic savings of 19.63, 15.88 or 17.33 €/m2/yr, respectively. Under similar climatic conditions, this symbiosis between buildings and urban agriculture makes an iRTG an efficient resource-management model and supports the promotion of a new typology or concept of buildings with a nexus or symbiosis between energy efficiency and food production.Postprint (published version

    Energy and technological refurbishment of the School of Architecture Valle Giulia, Rome

    Get PDF
    Modern architecture built in historical urban contexts represents a demanding issue when its energy efficiency should be improved. Indeed, the strongest efforts have to be made to maintain the architectural identity and its harmony with the surrounding cultural heritage. This study deals with the main building of the School of Architecture Valle Giulia in Rome, designed by Enrico Del Debbio in the 30’s. Further constraints are related to several interventions of airspace expansion starting from 1958 which involved the building starting from 1958. So, preservation would mean highlighting its historic change but, adapting the built environment to the contemporary users’ needs. As above-mentioned, the building belongs to the Valle delle Accademie, within the historic park of Villa Borghese, so that to acquire landscaping values. Those latter ones call for ulterior requirements when any new design process is conceived. The study provides a global renewal of the building accounting for the current low Indoor Environmental Quality in both summer and winter seasons and the lack of suitability to the contemporary University student’s needs. The interaction between building performance and HVAC systems was studied by collecting data and architectural surveys conducted by all the architects who modified the building. This procedure was chosen since thermo-physical investigations are considered destructive due to required perforations to identify the actual wall layers. Moreover, thermographic surveys were carried out to validate the modelled building response. The result of the study is the identification of viable interventions to improve the accessibility and fruition of the building as well as its energy performance. A specific cost-benefit analysis was done to prioritize the design options along with considering the measures needed to preserve all the architectural features and values

    Assessing water availability in Mediterranean regions affected by water conflicts through MODIS data time series analysis

    Get PDF
    Water scarcity is a widespread problem in arid and semi-arid regions such as the western Mediterranean coastal areas. The irregularity of the precipitation generates frequent droughts that exacerbate the conflicts among agriculture, water supply and water demands for ecosystems maintenance. Besides, global climate models predict that climate change will cause Mediterranean arid and semi-arid regions to shift towards lower rainfall scenarios that may exacerbate water conflicts. The purpose of this study is to find a feasible methodology to assess current and monitor future water demands in order to better allocate limited water resources. The interdependency between a vegetation index (NDVI), land surface temperature (LST), precipitation (current and future), and surface water resources availability in two watersheds in southeastern Spain with serious difficulties in meeting water demands was investigated. MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI and LST products (as proxy of drought), precipitation maps (generated from climate station records) and reservoir storage gauging information were used to compute times series anomalies from 2001 to 2014 and generate regression images and spatial regression models. The temporal relationship between reservoir storage and time series of satellite images allowed the detection of different and contrasting water management practices in the two watersheds. In addition, a comparison of current precipitation rates and future precipitation conditions obtained from global climate models suggests high precipitation reductions, especially in areas that have the potential to contribute significantly to groundwater storage and surface runoff, and are thus critical to reservoir storage. Finally, spatial regression models minimized spatial autocorrelation effects, and their results suggested the great potential of our methodology combining NDVI and LST time series to predict future scenarios of water scarcity.Published versio

    Long-lasting floods buffer the thermal regime of the Pampas

    Get PDF
    This work was funded by grants from the National Research Council of Argentina (CONICET), the International Research Development Centre [IDRC-Canada, Project 106601-001], ANPCyT [PRH 27 [PICT 2013-2973; PICT 2014-2790], and the Inter-American Institute for Global Change Research [IAI, CRN II 2031], which is supported by the US National Science Foundation[Grant number 448 GEO-0452325]. We thank Dr. Horacio Zagarese from INTECH for the lagoon temperature dataset provided. We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.Peer reviewedPostprin

    Assessing heat exposure to extreme temperatures in urban areas using the Local Climate Zone classification

    Get PDF
    Trends of extreme-temperature episodes in cities are increasing (in frequency, magnitude and duration) due to regional climate change in interaction with urban effects. Urban morphologies and thermal properties of the materials used to build them are factors that influence spatial and temporal climate variability and are one of the main reasons for the climatic singularity of cities. This paper presents a methodology to evaluate the urban and peri-urban effect on extreme-temperature exposure in Barcelona (Spain), using the Local Climate Zone (LCZ) classification as a basis, which allows a comparison with other cities of the world characterised using this criterion. LCZs were introduced as input of the high-resolution UrbClim model (100 m spatial resolution) to create daily temperature (median and maximum) series for summer (JJA) during the period 1987 to 2016, pixel by pixel, in order to create a cartography of extremes. Using the relationship between mortality due to high temperatures and temperature distribution, the heat exposure of each LCZ was obtained. Methodological results of the paper show the improvement obtained when LCZs were mapped through a combination of two techniques (land cover-land use maps and the World Urban Database and Access Portal Tools - WUDAPT - method), and the paper proposes a methodology to obtain the exposure to high temperatures of different LCZs in urban and peri-urban areas. In the case of Barcelona, the distribution of temperatures for the 90th percentile (about 3-4 ∘C above the average conditions) leads to an increase in the relative risk of mortality of 80 %
    corecore