41,706 research outputs found

    Prosodic Event Recognition using Convolutional Neural Networks with Context Information

    Full text link
    This paper demonstrates the potential of convolutional neural networks (CNN) for detecting and classifying prosodic events on words, specifically pitch accents and phrase boundary tones, from frame-based acoustic features. Typical approaches use not only feature representations of the word in question but also its surrounding context. We show that adding position features indicating the current word benefits the CNN. In addition, this paper discusses the generalization from a speaker-dependent modelling approach to a speaker-independent setup. The proposed method is simple and efficient and yields strong results not only in speaker-dependent but also speaker-independent cases.Comment: Interspeech 2017 4 pages, 1 figur

    I hear you eat and speak: automatic recognition of eating condition and food type, use-cases, and impact on ASR performance

    Get PDF
    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient

    Anti-spoofing Methods for Automatic SpeakerVerification System

    Full text link
    Growing interest in automatic speaker verification (ASV)systems has lead to significant quality improvement of spoofing attackson them. Many research works confirm that despite the low equal er-ror rate (EER) ASV systems are still vulnerable to spoofing attacks. Inthis work we overview different acoustic feature spaces and classifiersto determine reliable and robust countermeasures against spoofing at-tacks. We compared several spoofing detection systems, presented so far,on the development and evaluation datasets of the Automatic SpeakerVerification Spoofing and Countermeasures (ASVspoof) Challenge 2015.Experimental results presented in this paper demonstrate that the useof magnitude and phase information combination provides a substantialinput into the efficiency of the spoofing detection systems. Also wavelet-based features show impressive results in terms of equal error rate. Inour overview we compare spoofing performance for systems based on dif-ferent classifiers. Comparison results demonstrate that the linear SVMclassifier outperforms the conventional GMM approach. However, manyresearchers inspired by the great success of deep neural networks (DNN)approaches in the automatic speech recognition, applied DNN in thespoofing detection task and obtained quite low EER for known and un-known type of spoofing attacks.Comment: 12 pages, 0 figures, published in Springer Communications in Computer and Information Science (CCIS) vol. 66

    Using Sensor Metadata Streams to Identify Topics of Local Events in the City

    Get PDF
    In this paper, we study the emerging Information Retrieval (IR) task of local event retrieval using sensor metadata streams. Sensor metadata streams include information such as the crowd density from video processing, audio classifications, and social media activity. We propose to use these metadata streams to identify the topics of local events within a city, where each event topic corresponds to a set of terms representing a type of events such as a concert or a protest. We develop a supervised approach that is capable of mapping sensor metadata observations to an event topic. In addition to using a variety of sensor metadata observations about the current status of the environment as learning features, our approach incorporates additional background features to model cyclic event patterns. Through experimentation with data collected from two locations in a major Spanish city, we show that our approach markedly outperforms an alternative baseline. We also show that modelling background information improves event topic identification

    Grounding semantics in robots for Visual Question Answering

    Get PDF
    In this thesis I describe an operational implementation of an object detection and description system that incorporates in an end-to-end Visual Question Answering system and evaluated it on two visual question answering datasets for compositional language and elementary visual reasoning
    corecore