1,222,915 research outputs found

    Local area networks: architectures and implementations

    Get PDF
    In this book we present an explanation of the concepts that underlie local area network technology. We then examine in detail key local area network standards being developed by standards organizations. Finally, we discuss several local area network implementations, examining how their architectures reflect both formally published standards and the development of de facto standards and in what ways and to what levels compatibility is achieved

    Optical fibre local area networks

    Get PDF

    The Switched Local Area Networks’ Delay Problem: Issues and a Deterministic Solution Approach

    Get PDF
    A large number of installed local area networks are sluggish in terms of speed of uploading and down- loading of information. Researchers have, therefore, proposed the need for such networks to be designed with specified maximum end-to-end delay. This is because, if the maximum packet delay between any two nodes of a network is not known, it is impossible to provide a deterministic guarantee of worst case response times of packets’ flows. Therefore, the need for analytic and formal basis for designing such networks becomes very imperative. In this regard, this chapter has discussed the switched local area networks’ delay problem and related issues. It compared the two principal approaches for determining the end-to-end response times of flows in communication networks – stochastic approach and determin- istic approach. The chapter goes on to demonstrate the superiority of the latter approach by using it to develop and validate the goodness of a general maximum delay packet switch model

    Teaching models and local‐area networks

    Get PDF
    The thesis of this paper is that new advances in both microtechnology and LAN technology can now provide teachers with flexible and exciting instructional tools which allow for a powerful integration of teaching model, curriculum content and technology. The first section describes some of the current applications of school‐based LANs. The second section discusses various teaching models, and describes an in‐depth example of how a teacher may go about providing instruction by combining a LAN and these models. The third section addresses the feasibility of such an instructional approach

    Efficient checkpointing over local area networks

    Get PDF
    Parallel and distributed computing on clusters of workstations is becoming very popular as it provides a cost effective way for high performance computing. In these systems, the bandwidth of the communication subsystem (Using Ethernet technology) is about an order of magnitude smaller compared to the bandwidth of the storage subsystem. Hence, storing a state in a checkpoint is much more efficient than comparing states over the network. In this paper we present a novel checkpointing approach that enables efficient performance over local area networks. The main idea is that we use two types of checkpoints: compare-checkpoints (comparing the states of the redundant processes to detect faults) and store-checkpoints (where the state is only stored). The store-checkpoints reduce the rollback needed after a fault is detected, without performing many unnecessary comparisons. As a particular example of this approach we analyzed the DMR checkpointing scheme with store-checkpoints. Our main result is that the overhead of the execution time can be significantly reduced when store-checkpoints are introduced. We have implemented a prototype of the new DMR scheme and run it on workstations connected by a LAN. The experimental results we obtained match the analytical results and show that in some cases the overhead of the DMR checkpointing schemes over LAN's can be improved by as much as 20%

    Performance analysis of local area networks

    Get PDF
    A simulation of the TCP/IP protocol running on a CSMA/CD data link layer was described. The simulation was implemented using the simula language, and object oriented discrete event language. It allows the user to set the number of stations at run time, as well as some station parameters. Those parameters are the interrupt time and the dma transfer rate for each station. In addition, the user may configure the network at run time with stations of differing characteristics. Two types are available, and the parameters of both types are read from input files at run time. The parameters include the dma transfer rate, interrupt time, data rate, average message size, maximum frame size and the average interarrival time of messages per station. The information collected for the network is the throughput and the mean delay per packet. For each station, the number of messages attempted as well as the number of messages successfully transmitted is collected in addition to the throughput and mean packet delay per station

    Local area networks :

    Get PDF

    LaRC local area networks to support distributed computing

    Get PDF
    The Langley Research Center's (LaRC) Local Area Network (LAN) effort is discussed. LaRC initiated the development of a LAN to support a growing distributed computing environment at the Center. The purpose of the network is to provide an improved capability (over inteactive and RJE terminal access) for sharing multivendor computer resources. Specifically, the network will provide a data highway for the transfer of files between mainframe computers, minicomputers, work stations, and personal computers. An important influence on the overall network design was the vital need of LaRC researchers to efficiently utilize the large CDC mainframe computers in the central scientific computing facility. Although there was a steady migration from a centralized to a distributed computing environment at LaRC in recent years, the work load on the central resources increased. Major emphasis in the network design was on communication with the central resources within the distributed environment. The network to be implemented will allow researchers to utilize the central resources, distributed minicomputers, work stations, and personal computers to obtain the proper level of computing power to efficiently perform their jobs
    • 

    corecore