64,307 research outputs found

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Quantum Money with Classical Verification

    Full text link
    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it

    Quantum protocols for anonymous voting and surveying

    Get PDF
    We describe quantum protocols for voting and surveying. A key feature of our schemes is the use of entangled states to ensure that the votes are anonymous and to allow the votes to be tallied. The entanglement is distributed over separated sites; the physical inaccessibility of any one site is sufficient to guarantee the anonymity of the votes. The security of these protocols with respect to various kinds of attack is discussed. We also discuss classical schemes and show that our quantum voting protocol represents a N-fold reduction in computational complexity, where N is the number of voters.Comment: 8 pages. V2 includes the modifications made for the published versio
    • …
    corecore