78 research outputs found

    IEEE Access Special Section Editorial: Cloud-Fog-Edge Computing in Cyber–Physical–Social Systems (CPSS)

    Get PDF
    Cyber–Physical–Social Systems (CPSS) integrate the cyber, physical, and social spaces together. One of the ultimate goals of cyber–physical–social systems is to make our lives more convenient and intelligent by providing prospective and personalized services for users. To achieve this goal, a wide range of data in CPSS are employed as the starting point for research, since the data contain the users' historical behavior trajectory and the users' demand preference. Generated and collected from social and physical spaces and integrated into the cyberspace, CPSS data are complex and heterogeneous, recording all aspects of users' lives in the forms of image, audio, video, and text. Generally, the collected or generated data in CPSS satisfy the 4Vs (volume, variety, velocity, and veracity) of big data. Thus, knowing how to deal with CPSS big data efficiently is the key to providing services for users. From another perspective, CPSS big data are specified as the global historical data and the local real-time data. Cloud computing, as a powerful paradigm for implementing the data-intensive applications, has an irreplaceable role in processing global historical data. On the other hand, with the increasing computing capacity and communication capabilities of mobile terminal devices, fog-edge computing, as an important and effective supplement of cloud computing, has been widely used to process local real-time data. Therefore, the question of how to systematically and efficiently process CPSS big data (including both the global historical data and the local real-time data) in CPSS has become the key for providing services. The goal of this Special Section is therefore to provide insights and views into the area of Cloud-Fog-Edge Computing in CPSS, as well as to provide directions for research in the field

    Study on the Performance of TCP over 10Gbps High Speed Networks

    Get PDF
    Internet traffic is expected to grow phenomenally over the next five to ten years. To cope with such large traffic volumes, high-speed networks are expected to scale to capacities of terabits-per-second and beyond. Increasing the role of optics for packet forwarding and transmission inside the high-speed networks seems to be the most promising way to accomplish this capacity scaling. Unfortunately, unlike electronic memory, it remains a formidable challenge to build even a few dozen packets of integrated all-optical buffers. On the other hand, many high-speed networks depend on the TCP/IP protocol for reliability which is typically implemented in software and is sensitive to buffer size. For example, TCP requires a buffer size of bandwidth delay product in switches/routers to maintain nearly 100\% link utilization. Otherwise, the performance will be much downgraded. But such large buffer will challenge hardware design and power consumption, and will generate queuing delay and jitter which again cause problems. Therefore, improve TCP performance over tiny buffered high-speed networks is a top priority. This dissertation studies the TCP performance in 10Gbps high-speed networks. First, a 10Gbps reconfigurable optical networking testbed is developed as a research environment. Second, a 10Gbps traffic sniffing tool is developed for measuring and analyzing TCP performance. New expressions for evaluating TCP loss synchronization are presented by carefully examining the congestion events of TCP. Based on observation, two basic reasons that cause performance problems are studied. We find that minimize TCP loss synchronization and reduce flow burstiness impact are critical keys to improve TCP performance in tiny buffered networks. Finally, we present a new TCP protocol called Multi-Channel TCP and a new congestion control algorithm called Desynchronized Multi-Channel TCP (DMCTCP). Our algorithm implementation takes advantage of a potential parallelism from the Multi-Path TCP in Linux. Over an emulated 10Gbps network ruled by routers with only a few dozen packets of buffers, our experimental results confirm that bottleneck link utilization can be much better improved by DMCTCP than by many other TCP variants. Our study is a new step towards the deployment of optical packet switching/routing networks

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This book is Open Access under a CC BY licence. The LNCS 11427 and 11428 proceedings set constitutes the proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019. The total of 42 full and 8 short tool demo papers presented in these volumes was carefully reviewed and selected from 164 submissions. The papers are organized in topical sections as follows: Part I: SAT and SMT, SAT solving and theorem proving; verification and analysis; model checking; tool demo; and machine learning. Part II: concurrent and distributed systems; monitoring and runtime verification; hybrid and stochastic systems; synthesis; symbolic verification; and safety and fault-tolerant systems

    Evolution of Ionizing Radiation Research

    Get PDF
    The industrial and medical applications of radiation have been augmented and scientific insight into mechanisms for radiation action notably progressed. In addition, the public concern about radiation risk has also grown extensively. Today the importance of risk communication among stakeholders involved in radiation-related issues is emphasized much more than any time in the past. Thus, the circumstances of radiation research have drastically changed, and the demand for a novel approach to radiation-related issues is increasing. It is thought that the publication of the book Evolution of Ionizing Radiation Research at this time would have enormous impacts on the society. The editor believes that technical experts would find a variety of new ideas and hints in this book that would be helpful to them to tackle ionizing radiation

    Theoretical Approaches in Non-Linear Dynamical Systems

    Get PDF
    From Preface: The 15th International Conference „Dynamical Systems - Theory and Applications” (DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding scientists and engineers who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without great effort of the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz University of Technology. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our event was attended by over 180 researchers from 35 countries all over the world, who decided to share the results of their research and experience in different fields related to dynamical systems. This year, the DSTA Conference Proceedings were split into two volumes entitled „Theoretical Approaches in Non-Linear Dynamical Systems” and „Applicable Solutions in Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of Springer Proceedings in Mathematics and Statistics entitled „Control and Stability of Dynamical Systems”, „Mathematical and Numerical Approaches in Dynamical Systems” and „Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will be recommended to special issues of renowned scientific journals.Cover design: Kaźmierczak, MarekTechnical editor: Kaźmierczak, Mare

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells
    corecore