495 research outputs found

    Low-rank semidefinite programming for the MAX2SAT problem

    Full text link
    This paper proposes a new algorithm for solving MAX2SAT problems based on combining search methods with semidefinite programming approaches. Semidefinite programming techniques are well-known as a theoretical tool for approximating maximum satisfiability problems, but their application has traditionally been very limited by their speed and randomized nature. Our approach overcomes this difficult by using a recent approach to low-rank semidefinite programming, specialized to work in an incremental fashion suitable for use in an exact search algorithm. The method can be used both within complete or incomplete solver, and we demonstrate on a variety of problems from recent competitions. Our experiments show that the approach is faster (sometimes by orders of magnitude) than existing state-of-the-art complete and incomplete solvers, representing a substantial advance in search methods specialized for MAX2SAT problems.Comment: Accepted at AAAI'19. The code can be found at https://github.com/locuslab/mixsa

    Incremental Cardinality Constraints for MaxSAT

    Full text link
    Maximum Satisfiability (MaxSAT) is an optimization variant of the Boolean Satisfiability (SAT) problem. In general, MaxSAT algorithms perform a succession of SAT solver calls to reach an optimum solution making extensive use of cardinality constraints. Many of these algorithms are non-incremental in nature, i.e. at each iteration the formula is rebuilt and no knowledge is reused from one iteration to another. In this paper, we exploit the knowledge acquired across iterations using novel schemes to use cardinality constraints in an incremental fashion. We integrate these schemes with several MaxSAT algorithms. Our experimental results show a significant performance boost for these algo- rithms as compared to their non-incremental counterparts. These results suggest that incremental cardinality constraints could be beneficial for other constraint solving domains.Comment: 18 pages, 4 figures, 1 table. Final version published in Principles and Practice of Constraint Programming (CP) 201

    On Different Strategies for Eliminating Redundant Actions from Plans

    Get PDF
    Satisficing planning engines are often able to generate plans in a reasonable time, however, plans are often far from optimal. Such plans often contain a high number of redundant actions, that are actions, which can be removed without affecting the validity of the plans. Existing approaches for determining and eliminating redundant actions work in polynomial time, however, do not guarantee eliminating the "best" set of redundant actions, since such a problem is NP-complete. We introduce an approach which encodes the problem of determining the "best" set of redundant actions (i.e. having the maximum total-cost) as a weighted MaxSAT problem. Moreover, we adapt the existing polynomial technique which greedily tries to eliminate an action and its dependants from the plan in order to eliminate more expensive redundant actions. The proposed approaches are empirically compared to existing approaches on plans generated by state-of-the-art planning engines on standard planning benchmark
    • …
    corecore