415,227 research outputs found

    An Efficient Universal Bee Colony Optimization Algorithm

    Get PDF
    The artificial bee colony algorithm is a global optimization algorithm. The artificial bee colony optimization algorithm is easy to fall into local optimal. We proposed an efficient universal bee colony optimization algorithm (EUBCOA). The algorithm adds the search factor u and the selection strategy of the onlooker bees based on local optimal solution. In order to realize the controllability of algorithm search ability, the search factor u is introduced to improve the global search range and local search range. In the early stage of the iteration, the search scope is expanded and the convergence rate is increased. In the latter part of the iteration, the algorithm uses the selection strategy to improve the algorithm accuracy and convergence rate. We select ten benchmark functions to testify the performance of the algorithm. Experimental results show that the EUBCOA algorithm effectively improves the convergence speed and convergence accuracy of the ABC algorithm

    A memetic algorithm for the university course timetabling problem

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2008 IEEEThe design of course timetables for academic institutions is a very hectic job due to the exponential number of possible feasible timetables with respect to the problem size. This process involves lots of constraints that must be respected and a huge search space to be explored, even if the size of the problem input is not significantly large. On the other hand, the problem itself does not have a widely approved definition, since different institutions face different variations of the problem. This paper presents a memetic algorithm that integrates two local search methods into the genetic algorithm for solving the university course timetabling problem (UCTP). These two local search methods use their exploitive search ability to improve the explorative search ability of genetic algorithms. The experimental results indicate that the proposed memetic algorithm is efficient for solving the UCTP

    A new electromagnetism-like algorithm with a population shrinking strategy

    Get PDF
    The Electromagnetism-like (EM) algorithm, developed by Birbil and Fang [31 is a population-based stochastic global optimization algorithm that uses an attraction-repulsion mechanism to move sample points toward optimality. In order to improve the accuracy of the solutions the EM algorithm incorporates a random local search. In this paper we propose: a new local search procedure based on a pattern search method, and a population shrinking strategy to improve efficiency. The proposed method is applied to some test problems and compared with the original EM algorithm.info:eu-repo/semantics/publishedVersio

    Advanced Multilevel Node Separator Algorithms

    Full text link
    A node separator of a graph is a subset S of the nodes such that removing S and its incident edges divides the graph into two disconnected components of about equal size. In this work, we introduce novel algorithms to find small node separators in large graphs. With focus on solution quality, we introduce novel flow-based local search algorithms which are integrated in a multilevel framework. In addition, we transfer techniques successfully used in the graph partitioning field. This includes the usage of edge ratings tailored to our problem to guide the graph coarsening algorithm as well as highly localized local search and iterated multilevel cycles to improve solution quality even further. Experiments indicate that flow-based local search algorithms on its own in a multilevel framework are already highly competitive in terms of separator quality. Adding additional local search algorithms further improves solution quality. Our strongest configuration almost always outperforms competing systems while on average computing 10% and 62% smaller separators than Metis and Scotch, respectively

    A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling

    Get PDF
    Copyright @ Springer Science + Business Media. All rights reserved.The post enrolment course timetabling problem (PECTP) is one type of university course timetabling problems, in which a set of events has to be scheduled in time slots and located in suitable rooms according to the student enrolment data. The PECTP is an NP-hard combinatorial optimisation problem and hence is very difficult to solve to optimality. This paper proposes a hybrid approach to solve the PECTP in two phases. In the first phase, a guided search genetic algorithm is applied to solve the PECTP. This guided search genetic algorithm, integrates a guided search strategy and some local search techniques, where the guided search strategy uses a data structure that stores useful information extracted from previous good individuals to guide the generation of offspring into the population and the local search techniques are used to improve the quality of individuals. In the second phase, a tabu search heuristic is further used on the best solution obtained by the first phase to improve the optimality of the solution if possible. The proposed hybrid approach is tested on a set of benchmark PECTPs taken from the international timetabling competition in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed hybrid approach is able to produce promising results for the test PECTPs.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and Grant EP/E060722/02
    corecore