105,262 research outputs found

    Inversion improves the recognition of facial expression in thatcherized images

    Get PDF
    The Thatcher illusion provides a compelling example of the face inversion effect. However, the marked effect of inversion in the Thatcher illusion contrasts to other studies that report only a small effect of inversion on the recognition of facial expressions. To address this discrepancy, we compared the effects of inversion and thatcherization on the recognition of facial expressions. We found that inversion of normal faces caused only a small reduction in the recognition of facial expressions. In contrast, local inversion of facial features in upright thatcherized faces resulted in a much larger reduction in the recognition of facial expressions. Paradoxically, inversion of thatcherized faces caused a relative increase in the recognition of facial expressions. Together, these results suggest that different processes explain the effects of inversion on the recognition of facial expressions and on the perception of the Thatcher illusion. The grotesque perception of thatcherized images is based on a more orientation-sensitive representation of the face. In contrast, the recognition of facial expression is dependent on a more orientation-insensitive representation. A similar pattern of results was evident when only the mouth or eye region was visible. These findings demonstrate that a key component of the Thatcher illusion is to be found in orientation-specific encoding of the features of the face

    Differential Evolution to Optimize Hidden Markov Models Training: Application to Facial Expression Recognition

    Get PDF
    The base system in this paper uses Hidden Markov Models (HMMs) to model dynamic relationships among facial features in facial behavior interpretation and understanding field. The input of HMMs is a new set of derived features from geometrical distances obtained from detected and automatically tracked facial points. Numerical data representation which is in the form of multi-time series is transformed to a symbolic representation in order to reduce dimensionality, extract the most pertinent information and give a meaningful representation to humans. The main problem of the use of HMMs is that the training is generally trapped in local minima, so we used the Differential Evolution (DE) algorithm to offer more diversity and so limit as much as possible the occurrence of stagnation. For this reason, this paper proposes to enhance HMM learning abilities by the use of DE as an optimization tool, instead of the classical Baum and Welch algorithm. Obtained results are compared against the traditional learning approach and significant improvements have been obtained.</p

    Facial expression recognition with emotion-based feature fusion

    Full text link
    © 2015 Asia-Pacific Signal and Information Processing Association. In this paper, we propose an emotion-based feature fusion method using the Discriminant-Analysis of Canonical Correlations (DCC) for facial expression recognition. There have been many image features or descriptors proposed for facial expression recognition. For the different features, they may be more accurate for the recognition of different expressions. In our proposed method, four effective descriptors for facial expression representation, namely Local Binary Pattern (LBP), Local Phase Quantization (LPQ), Weber Local Descriptor (WLD), and Pyramid of Histogram of Oriented Gradients (PHOG), are considered. Supervised Locality Preserving Projection (SLPP) is applied to the respective features for dimensionality reduction and manifold learning. Experiments show that descriptors are also sensitive to the conditions of images, such as race, lighting, pose, etc. Thus, an adaptive descriptor selection algorithm is proposed, which determines the best two features for each expression class on a given training set. These two features are fused, so as to achieve a higher recognition rate for each expression. In our experiments, the JAFFE and BAUM-2 databases are used, and experiment results show that the descriptor selection step increases the recognition rate up to 2%

    Implicit Neural Head Synthesis via Controllable Local Deformation Fields

    Full text link
    High-quality reconstruction of controllable 3D head avatars from 2D videos is highly desirable for virtual human applications in movies, games, and telepresence. Neural implicit fields provide a powerful representation to model 3D head avatars with personalized shape, expressions, and facial parts, e.g., hair and mouth interior, that go beyond the linear 3D morphable model (3DMM). However, existing methods do not model faces with fine-scale facial features, or local control of facial parts that extrapolate asymmetric expressions from monocular videos. Further, most condition only on 3DMM parameters with poor(er) locality, and resolve local features with a global neural field. We build on part-based implicit shape models that decompose a global deformation field into local ones. Our novel formulation models multiple implicit deformation fields with local semantic rig-like control via 3DMM-based parameters, and representative facial landmarks. Further, we propose a local control loss and attention mask mechanism that promote sparsity of each learned deformation field. Our formulation renders sharper locally controllable nonlinear deformations than previous implicit monocular approaches, especially mouth interior, asymmetric expressions, and facial details.Comment: Accepted at CVPR 202

    Robust Facial Expression Recognition via Compressive Sensing

    Get PDF
    Recently, compressive sensing (CS) has attracted increasing attention in the areas of signal processing, computer vision and pattern recognition. In this paper, a new method based on the CS theory is presented for robust facial expression recognition. The CS theory is used to construct a sparse representation classifier (SRC). The effectiveness and robustness of the SRC method is investigated on clean and occluded facial expression images. Three typical facial features, i.e., the raw pixels, Gabor wavelets representation and local binary patterns (LBP), are extracted to evaluate the performance of the SRC method. Compared with the nearest neighbor (NN), linear support vector machines (SVM) and the nearest subspace (NS), experimental results on the popular Cohn-Kanade facial expression database demonstrate that the SRC method obtains better performance and stronger robustness to corruption and occlusion on robust facial expression recognition tasks

    A Joint Local and Global Deep Metric Learning Method for Caricature Recognition

    Get PDF
    Caricature recognition is a novel, interesting, yet challenging problem. Due to the exaggeration and distortion, there is a large cross-modal gap between photographs and caricatures, making it nontrivial to match the features of photographs and caricatures. To address the problem, a joint local and global metric learning method (LGDML) is proposed. First, joint local and global feature representation is learnt with convolutional neural networks to find both discriminant features of local facial parts and global distinctive features of the whole face. Next, in order to fuse the local and global similarities of features, a unified feature representation and similarity measure learning framework is proposed. Various methods are evaluated on the caricature recognition task. We have verified that both local and global features are crucial for caricature recognition. Moreover, experimental results show that, compared with the state-of-the-art methods, LGDML can obtain superior performance in terms of Rank-1 and Rank-10
    corecore