1,061 research outputs found

    Locality and Structure Regularized Low Rank Representation for Hyperspectral Image Classification

    Full text link
    Hyperspectral image (HSI) classification, which aims to assign an accurate label for hyperspectral pixels, has drawn great interest in recent years. Although low rank representation (LRR) has been used to classify HSI, its ability to segment each class from the whole HSI data has not been exploited fully yet. LRR has a good capacity to capture the underlying lowdimensional subspaces embedded in original data. However, there are still two drawbacks for LRR. First, LRR does not consider the local geometric structure within data, which makes the local correlation among neighboring data easily ignored. Second, the representation obtained by solving LRR is not discriminative enough to separate different data. In this paper, a novel locality and structure regularized low rank representation (LSLRR) model is proposed for HSI classification. To overcome the above limitations, we present locality constraint criterion (LCC) and structure preserving strategy (SPS) to improve the classical LRR. Specifically, we introduce a new distance metric, which combines both spatial and spectral features, to explore the local similarity of pixels. Thus, the global and local structures of HSI data can be exploited sufficiently. Besides, we propose a structure constraint to make the representation have a near block-diagonal structure. This helps to determine the final classification labels directly. Extensive experiments have been conducted on three popular HSI datasets. And the experimental results demonstrate that the proposed LSLRR outperforms other state-of-the-art methods.Comment: 14 pages, 7 figures, TGRS201

    Joint sparse model-based discriminative K-SVD for hyperspectral image classification

    Get PDF
    Sparse representation classification (SRC) is being widely investigated on hyperspectral images (HSI). For SRC methods to achieve high classification performance, not only is the development of sparse representation models essential, the designing and learning of quality dictionaries also plays an important role. That is, a redundant dictionary with well-designated atoms is required in order to ensure low reconstruction error, high discriminative power, and stable sparsity. In this paper, we propose a new method to learn such dictionaries for HSI classification. We borrow the concept of joint sparse model (JSM) from SRC to dictionary learning. JSM assumes local smoothness and joint sparsity and was initially proposed for classification of HSI. We leverage JSM to develop an extension of discriminative K-SVD for learning a promising discriminative dictionary for HSI. Through a semi-supervised strategy, the new dictionary learning method, termed JSM-DKSVD, utilises all spectrums over the local neighbourhoods of labelled training pixels for discriminative dictionary learning. It can produce a redundant dictionary with rich spectral and spatial information as well as high discriminative power. The learned dictionary can then be compatibly used in conjunction with the established SRC methods, and can significantly improve their performance for HSI classification

    Unsupervised spectral sub-feature learning for hyperspectral image classification

    Get PDF
    Spectral pixel classification is one of the principal techniques used in hyperspectral image (HSI) analysis. In this article, we propose an unsupervised feature learning method for classification of hyperspectral images. The proposed method learns a dictionary of sub-feature basis representations from the spectral domain, which allows effective use of the correlated spectral data. The learned dictionary is then used in encoding convolutional samples from the hyperspectral input pixels to an expanded but sparse feature space. Expanded hyperspectral feature representations enable linear separation between object classes present in an image. To evaluate the proposed method, we performed experiments on several commonly used HSI data sets acquired at different locations and by different sensors. Our experimental results show that the proposed method outperforms other pixel-wise classification methods that make use of unsupervised feature extraction approaches. Additionally, even though our approach does not use any prior knowledge, or labelled training data to learn features, it yields either advantageous, or comparable, results in terms of classification accuracy with respect to recent semi-supervised methods

    Low-dimensional Representations of Hyperspectral Data for Use in CRF-based Classification

    Get PDF
    Probabilistic graphical models have strong potential for use in hyperspectral image classification. One important class of probabilisitic graphical models is the Conditional Random Field (CRF), which has distinct advantages over traditional Markov Random Fields (MRF), including: no independence assumption is made over the observation, and local and pairwise potential features can be defined with flexibility. Conventional methods for hyperspectral image classification utilize all spectral bands and assign the corresponding raw intensity values into the feature functions in CRFs. These methods, however, require significant computational efforts and yield an ambiguous summary from the data. To mitigate these problems, we propose a novel processing method for hyperspectral image classification by incorporating a lower dimensional representation into the CRFs. In this paper, we use representations based on three types of graph-based dimensionality reduction algorithms: Laplacian Eigemaps (LE), Spatial-Spectral Schroedinger Eigenmaps (SSSE), and Local Linear Embedding (LLE), and we investigate the impact of choice of representation on the subsequent CRF-based classifications
    • …
    corecore