20 research outputs found

    New Models for High-Quality Surface Reconstruction and Rendering

    Get PDF
    The efficient reconstruction and artifact-free visualization of surfaces from measured real-world data is an important issue in various applications, such as medical and scientific visualization, quality control, and the media-related industry. The main contribution of this thesis is the development of the first efficient GPU-based reconstruction and visualization methods using trivariate splines, i.e., splines defined on tetrahedral partitions. Our methods show that these models are very well-suited for real-time reconstruction and high-quality visualizations of surfaces from volume data. We create a new quasi-interpolating operator which for the first time solves the problem of finding a globally C1-smooth quadratic spline approximating data and where no tetrahedra need to be further subdivided. In addition, we devise a new projection method for point sets arising from a sufficiently dense sampling of objects. Compared with existing approaches, high-quality surface triangulations can be generated with guaranteed numerical stability. Keywords. Piecewise polynomials; trivariate splines; quasi-interpolation; volume data; GPU ray casting; surface reconstruction; point set surface

    New Models for High-Quality Surface Reconstruction and Rendering

    Get PDF
    The efficient reconstruction and artifact-free visualization of surfaces from measured real-world data is an important issue in various applications, such as medical and scientific visualization, quality control, and the media-related industry. The main contribution of this thesis is the development of the first efficient GPU-based reconstruction and visualization methods using trivariate splines, i.e., splines defined on tetrahedral partitions. Our methods show that these models are very well-suited for real-time reconstruction and high-quality visualizations of surfaces from volume data. We create a new quasi-interpolating operator which for the first time solves the problem of finding a globally C1-smooth quadratic spline approximating data and where no tetrahedra need to be further subdivided. In addition, we devise a new projection method for point sets arising from a sufficiently dense sampling of objects. Compared with existing approaches, high-quality surface triangulations can be generated with guaranteed numerical stability. Keywords. Piecewise polynomials; trivariate splines; quasi-interpolation; volume data; GPU ray casting; surface reconstruction; point set surface

    Multivariate Splines and Algebraic Geometry

    Get PDF
    Multivariate splines are effective tools in numerical analysis and approximation theory. Despite an extensive literature on the subject, there remain open questions in finding their dimension, constructing local bases, and determining their approximation power. Much of what is currently known was developed by numerical analysts, using classical methods, in particular the so-called Bernstein-B´ezier techniques. Due to their many interesting structural properties, splines have become of keen interest to researchers in commutative and homological algebra and algebraic geometry. Unfortunately, these communities have not collaborated much. The purpose of the half-size workshop is to intensify the interaction between the different groups by bringing them together. This could lead to essential breakthroughs on several of the above problems

    Lagrange interpolation and quasi-interpolation using trivariate splines on a uniform partition

    Get PDF
    We develop quasi-interpolation methods and a Lagrange interpolation method for trivariate splines on a regular tetrahedral partition, based on the Bernstein-BĂ©zier representation of polynomials. The partition is based on the bodycentered cubic grid. Our quasi-interpolation operators use quintic C2 splines and are defined by giving explicit formulae for each coefficient. One operator satisfies a certain convexity condition, but has sub-optimal approximation order. A second operator has optimal approximation order, while a third operator interpolates the provided data values. The first two operators are defined by a small set of computation rules which can be applied independently to all tetrahedra of the underlying partition. The interpolating operator is more complex while maintaining the best-possible approximation order for the spline space. It relies on a decomposition of the partition into four classes, for each of which a set of computation rules is provided. Moreover, we develop algorithms that construct blending operators which are based on two quasi-interpolation operators defined for the same spline space, one of which is convex. The resulting blending operator satisfies the convexity condition for a given data set. The local Lagrange interpolation method is based on cubic C1 splines and focuses on low locality. Our method is 2-local, while comparable methods are at least 4-local. We provide numerical tests which confirm the results, and high-quality visualizations of both artificial and real-world data sets

    Interpolation mit C1-Supersplines auf Klassen von Tetraederzerlegungen

    Full text link
    Wir entwickeln eine allgemeine Methode zur Konstruktion von Tetraederzerlegungen Δ, welche für die Interpolation mit trivariaten C1 Supersplines vom Grad ≥ 6 geeignet sind. Die natürlichen Zerlegungen Δ werden schrittweise induktiv durch Anhängen von Tetraedern definiert. Mit Hilfe von Bézier- Bernstein-Techniken bestimmen wir zunächst die Dimension der Splineräume. Danach konstruieren wir Lagrange- und Hermite-Interpolationsmengen für die Splines hinsichtlich Δ. Hermite-Interpolation tritt hierbei als Grenzfall der Lagrange-Interpolation auf. Die interpolierenden Splines können effizient berechnet werden, indem schrittweise lokal kleine lineare Gleichungssysteme gelöst werden

    Non-Uniform Rational B-Splines and Rational Bezier Triangles for Isogeometric Analysis of Structural Applications

    Full text link
    Isogeometric Analysis (IGA) is a major advancement in computational analysis that bridges the gap between a computer-aided design (CAD) model, which is typically constructed using Non-Uniform Rational B-splines (NURBS), and a computational model that traditionally uses Lagrange polynomials to represent the geometry and solution variables. In IGA, the same shape functions that are used in CAD are employed for analysis. The direct manipulation of CAD data eliminates approximation errors that emanate from the process of converting the geometry from CAD to Finite Element Analysis (FEA). As a result, IGA allows the exact geometry to be represented at the coarsest level and maintained throughout the analysis process. While IGA was initially introduced to streamline the design and analysis process, this dissertation shows that IGA can also provide improved computational results for complex and highly nonlinear problems in structural mechanics. This dissertation addresses various problems in structural mechanics in the context of IGA, with the use of NURBS and rational BĂ©zier triangles for the description of the parametric and physical spaces. The approaches considered here show that a number of important properties (e.g., high-order smoothness, geometric exactness, reduced number of degrees of freedom, and increased flexibility in discretization) can be achieved, leading to improved numerical solutions. Specifically, using B-splines and a layer-based discretization, a distributed plasticity isogeometric frame model is formulated to capture the spread of plasticity in large-deformation frames. The modeling approach includes an adaptive analysis where the structure of interest is initially modeled with coarse mesh and knots are inserted based on the yielding information at the quadrature points. It is demonstrated that improvement on efficiency and convergence rates is attained. With NURBS, an isogeometric rotation-free multi-layered plate formulation is developed based on a layerwise deformation theory. The derivation assumes a separate displacement field expansion within each layer, and considers transverse displacement component as C0-continuous at dissimilar material interfaces, which is enforced via knot repetition. The separate integration of the in-plane and through-thickness directions allows to capture the complete 3D stresses in a 2D setting. The proposed method is used to predict the behavior of advanced materials such as laminated composites, and the results show advantages in efficiency and accuracy. To increase the flexibility in discretizing complex geometries, rational BĂ©zier triangles for domain triangulation is studied. They are further coupled with a Delaunay-based feature-preserving discretization algorithm for static bending and free vibration analysis of Kirchhoff plates. Lagrange multipliers are employed to explicitly impose high-order continuity constraints and the augmented system is solved iteratively without increasing the matrix size. The resulting discretization is geometrically exact, admits small geometric features, and constitutes C1-continuity. The feature-preserving rational BĂ©zier triangles are further applied to smeared damage modeling of quasi-brittle materials. Due to the ability of Lagrange multipliers to raise global continuity to any desired order, the implicit fourth- and sixth-order gradient damage models are analyzed. The inclusion of higher-order terms in the nonlocal Taylor expansion improves solution accuracy. A local refinement algorithm that resolves marked regions with high resolution while keeping the resulting mesh conforming and well-conditioned is also utilized to improve efficiency. The outcome is a unified modeling framework where the feature-preserving discretization is able to capture the damage initiation and early-stage propagation, and the local refinement technique can then be applied to adaptively refine the mesh in the direction of damage propagation.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147668/1/ningliu_1.pd

    New Techniques for the Modeling, Processing and Visualization of Surfaces and Volumes

    Get PDF
    With the advent of powerful 3D acquisition technology, there is a growing demand for the modeling, processing, and visualization of surfaces and volumes. The proposed methods must be efficient and robust, and they must be able to extract the essential structure of the data and to easily and quickly convey the most significant information to a human observer. Independent of the specific nature of the data, the following fundamental problems can be identified: shape reconstruction from discrete samples, data analysis, and data compression. This thesis presents several novel solutions to these problems for surfaces (Part I) and volumes (Part II). For surfaces, we adopt the well-known triangle mesh representation and develop new algorithms for discrete curvature estimation,detection of feature lines, and line-art rendering (Chapter 3), for connectivity encoding (Chapter 4), and for topology preserving compression of 2D vector fields (Chapter 5). For volumes, that are often given as discrete samples, we base our approach for reconstruction and visualization on the use of new trivariate spline spaces on a certain tetrahedral partition. We study the properties of the new spline spaces (Chapter 7) and present efficient algorithms for reconstruction and visualization by iso-surface rendering for both, regularly (Chapter 8) and irregularly (Chapter 9) distributed data samples

    Trivariate C1-Splines auf gleichmäßigen Partitionen

    Full text link
    In der vorliegenden Dissertation werden Splines auf gleichmäßigen Partitionen untersucht. Ziel der Arbeit ist die Analyse von multivariaten Splineräumen und die Entwicklung von neuen Methoden zur Lösung von Interpolations- und Approximationsproblemen mit trivariaten C1-Splines. Die entwickelten Methoden werden in Hinblick auf Lokalität, Stabilität und Approximationsordnung untersucht und die Ergebnisse dem Stand der Technik gegenübergestellt. Erstmalig kann dabei eine Quasi-Interpolationsmethode für trivariate C1-Splines vom totalen Grad zwei entwickelt werden und zur interaktiven Volumenvisualisierung mit Raycasting Techniken effizient eingesetzt werden
    corecore