6,427 research outputs found

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm

    Side-View Face Recognition

    Get PDF
    Side-view face recognition is a challenging problem with many applications. Especially in real-life scenarios where the environment is uncontrolled, coping with pose variations up to side-view positions is an important task for face recognition. In this paper we discuss the use of side view face recognition techniques to be used in house safety applications. Our aim is to recognize people as they pass through a door, and estimate their location in the house. Here, we compare available databases appropriate for this task, and review current methods for profile face recognition

    Improving face gender classification by adding deliberately misaligned faces to the training data

    Get PDF
    A novel method of face gender classifier construction is proposed and evaluated. Previously, researchers have assumed that a computationally expensive face alignment step (in which the face image is transformed so that facial landmarks such as the eyes, nose, chin, etc, are in uniform locations in the image) is required in order to maximize the accuracy of predictions on new face images. We, however, argue that this step is not necessary, and that machine learning classifiers can be made robust to face misalignments by automatically expanding the training data with examples of faces that have been deliberately misaligned (for example, translated or rotated). To test our hypothesis, we evaluate this automatic training dataset expansion method with two types of image classifier, the first based on weak features such as Local Binary Pattern histograms, and the second based on SIFT keypoints. Using a benchmark face gender classification dataset recently proposed in the literature, we obtain a state-of-the-art accuracy of 92.5%, thus validating our approach
    • ā€¦
    corecore