678 research outputs found

    Separation between coherent and turbulent fluctuations. What can we learn from the Empirical Mode Decomposition?

    Full text link
    The performances of a new data processing technique, namely the Empirical Mode Decomposition, are evaluated on a fully developed turbulent velocity signal perturbed by a numerical forcing which mimics a long-period flapping. First, we introduce a "resemblance" criterion to discriminate between the polluted and the unpolluted modes extracted from the perturbed velocity signal by means of the Empirical Mode Decomposition algorithm. A rejection procedure, playing, somehow, the role of a high-pass filter, is then designed in order to infer the original velocity signal from the perturbed one. The quality of this recovering procedure is extensively evaluated in the case of a "mono-component" perturbation (sine wave) by varying both the amplitude and the frequency of the perturbation. An excellent agreement between the recovered and the reference velocity signals is found, even though some discrepancies are observed when the perturbation frequency overlaps the frequency range corresponding to the energy-containing eddies as emphasized by both the energy spectrum and the structure functions. Finally, our recovering procedure is successfully performed on a time-dependent perturbation (linear chirp) covering a broad range of frequencies.Comment: 23 pages, 13 figures, submitted to Experiments in Fluid

    A new optimization based approach to the empirical mode decomposition

    No full text
    International audienceIn this paper, an alternative optimization based approach to the empirical mode decomposition (EMD) is proposed. The principle is to build first an approximation of the signal mean envelope, which serves as initial guess for the optimization procedure. We develop several optimization strategies to approximate the mean envelope which compare favorably with the original EMD on AM/FM signals

    Statistical Properties and Applications of Empirical Mode Decomposition

    Get PDF
    Signal analysis is key to extracting information buried in noise. The decomposition of signal is a data analysis tool for determining the underlying physical components of a processed data set. However, conventional signal decomposition approaches such as wavelet analysis, Wagner-Ville, and various short-time Fourier spectrograms are inadequate to process real world signals. Moreover, most of the given techniques require \emph{a prior} knowledge of the processed signal, to select the proper decomposition basis, which makes them improper for a wide range of practical applications. Empirical Mode Decomposition (EMD) is a non-parametric and adaptive basis driver that is capable of breaking-down non-linear, non-stationary signals into an intrinsic and finite components called Intrinsic Mode Functions (IMF). In addition, EMD approximates a dyadic filter that isolates high frequency components, e.g. noise, in higher index IMFs. Despite of being widely used in different applications, EMD is an ad hoc solution. The adaptive performance of EMD comes at the expense of formulating a theoretical base. Therefore, numerical analysis is usually adopted in literature to interpret the behavior. This dissertation involves investigating statistical properties of EMD and utilizing the outcome to enhance the performance of signal de-noising and spectrum sensing systems. The novel contributions can be broadly summarized in three categories: a statistical analysis of the probability distributions of the IMFs and a suggestion of Generalized Gaussian distribution (GGD) as a best fit distribution; a de-noising scheme based on a null-hypothesis of IMFs utilizing the unique filter behavior of EMD; and a novel noise estimation approach that is used to shift semi-blind spectrum sensing techniques into fully-blind ones based on the first IMF. These contributions are justified statistically and analytically and include comparison with other state of art techniques

    A Statistical Perspective of the Empirical Mode Decomposition

    Get PDF
    This research focuses on non-stationary basis decompositions methods in time-frequency analysis. Classical methodologies in this field such as Fourier Analysis and Wavelet Transforms rely on strong assumptions of the underlying moment generating process, which, may not be valid in real data scenarios or modern applications of machine learning. The literature on non-stationary methods is still in its infancy, and the research contained in this thesis aims to address challenges arising in this area. Among several alternatives, this work is based on the method known as the Empirical Mode Decomposition (EMD). The EMD is a non-parametric time-series decomposition technique that produces a set of time-series functions denoted as Intrinsic Mode Functions (IMFs), which carry specific statistical properties. The main focus is providing a general and flexible family of basis extraction methods with minimal requirements compared to those within the Fourier or Wavelet techniques. This is highly important for two main reasons: first, more universal applications can be taken into account; secondly, the EMD has very little a priori knowledge of the process required to apply it, and as such, it can have greater generalisation properties in statistical applications across a wide array of applications and data types. The contributions of this work deal with several aspects of the decomposition. The first set regards the construction of an IMF from several perspectives: (1) achieving a semi-parametric representation of each basis; (2) extracting such semi-parametric functional forms in a computationally efficient and statistically robust framework. The EMD belongs to the class of path-based decompositions and, therefore, they are often not treated as a stochastic representation. (3) A major contribution involves the embedding of the deterministic pathwise decomposition framework into a formal stochastic process setting. One of the assumptions proper of the EMD construction is the requirement for a continuous function to apply the decomposition. In general, this may not be the case within many applications. (4) Various multi-kernel Gaussian Process formulations of the EMD will be proposed through the introduced stochastic embedding. Particularly, two different models will be proposed: one modelling the temporal mode of oscillations of the EMD and the other one capturing instantaneous frequencies location in specific frequency regions or bandwidths. (5) The construction of the second stochastic embedding will be achieved with an optimisation method called the cross-entropy method. Two formulations will be provided and explored in this regard. Application on speech time-series are explored to study such methodological extensions given that they are non-stationary
    corecore