12 research outputs found

    An interferometric phase noise reduction method based on modified denoising convolutional neural network

    Get PDF
    Traditional interferometric synthetic aperture radar (InSAR) denoising methods normally try to estimate the phase fringes directly from the noisy interferogram. Since the statistics of phase noise are more stable than the phase corresponding to complex terrain, it could be easier to estimate the phase noise. In this paper, phase noises rather than phase fringes are estimated first, and then they are subtracted from the noisy interferometric phase for denoising. The denoising convolutional neural network (DnCNN) is introduced to estimate phase noise and then a modified network called IPDnCNN is constructed for the problem. Based on the IPDnCNN, a novel interferometric phase noise reduction algorithm is proposed, which can reduce phase noise while protecting fringe edges and avoid the use of filter windows. Experimental results using simulated and real data are provided to demonstrate the effectiveness of the proposed method

    Nonlocal noise reduction method based on fringe frequency compensation for SAR interferogram

    Get PDF
    Phase noise reduction is one of the key steps for synthetic aperture radar interferometry data processing. In this article, a novel phase filtering method is proposed. The main innovation and contribution of this research is to 1) incorporate local fringe frequency (LFF) compensation technique into the nonlocal phase filtering method to include more independent and identically distributed samples for filtering; 2) modify the nonlocal phase filter from three aspects: 1) executing nonlocal filtering in the complex domain of the residual phase to avoid gray jumps in phase, 2) adaptively calculating the smoothing parameter based on the LFF and the coherence coefficient, and 3) using the integral image in similarity calculation to improve the efficiency; 3) perform Goldstein filter in high coherence areas to reduce the computation expense. Experiments based on both simulated and real data have shown that the proposed method has achieved a better performance in terms of both noise reduction and edge preservation than some existing phase filtering methods

    Monitoring land subsidence of airport using InSAR time-series techniques with atmospheric and orbital error corrections

    Get PDF
    Land subsidence is one of the common geological hazards worldwide and mostly caused by human activities including the construction of massive infrastructures. Large infrastructure such as airport is susceptible to land subsidence due to several factors. Therefore, monitoring of the land subsidence at airport is crucial in order to prevent undesirable loss of property and life. Remote sensing technique, especially Interferometric Synthetic Aperture Radar (InSAR) has been successfully applied to measure the surface deformation over the past few decades although atmospheric artefact and orbital errors are still a concerning issue in this measurement technique. Multi-temporal InSAR, an extension of InSAR technique, uses large sets of SAR scenes to investigate the temporal evolution of surface deformation and mitigate errors found in a single interferogram. This study investigates the long-term land subsidence of the Kuala Lumpur International Airport (KLIA), Malaysia and Singapore Changi Airport (SCA), Singapore by using two multi-temporal InSAR techniques like Small Baseline Subset (SBAS) and Multiscale InSAR Time Series (MInTS). General InSAR processing was conducted to generate interferogram using ALOS PALSAR data from 2007 until 2011. Atmospheric and orbital corrections were carried out for all interferograms using weather model, namely European Centre for Medium Range Weather Forecasting (ECMWF) and Network De-Ramping technique respectively before estimating the time series land subsidence. The results show variation of subsidence with respect to corrections (atmospheric and orbital) as well as difference between multi-temporal InSAR techniques (SBAS and MInTS) used. After applying both corrections, a subsidence ranging from 2 to 17 mm/yr was found at all the selected areas at the KLIA. Meanwhile, for SCA, a subsidence of about less than 10 mm/yr was found. Furthermore, a comparison between two techniques (SBAS and MInTS) show a difference rate of subsidence of about less than 1 mm/yr for both study area. SBAS technique shows more linear result as compared to the MInTS technique which shows slightly scattering pattern but both techniques show a similar trend of surface deformation in both study sites. No drastic deformation was observed in these two study sites and slight deformation was detected which about less than 20mm/yr for both study areas probably occurred due to several reasons including conversion of the land use from agricultural land, land reclamation process and also poor construction. This study proved that InSAR time series surface deformation measurement techniques are useful as well as capable to monitor deformation of large infrastructure such as airport and as an alternative to costly conventional ground measurement for infrastructure monitoring

    Large area forest stem volume mapping using synergy of spaceborne interferometric radar and optical remote sensing: a case study of northeast chin

    Get PDF
    More than a decade of investigations on the use of the interferometric ERS-1/2 tandem coherence for forest applications have increased the understanding of the behaviour of C-band repeat-pass coherence over forested terrain. It has been shown that under optimal imaging conditions, ERS-1/2 tandem coherence can be used for stem volume retrieval with accuracies in the range of ground surveys. Large-area applications of ERS-1/2 tandem coherence are rare though. One of the main limitations concerning large-area exploitation of the existing ERS-1/2 tandem archives for forest stem volume retrieval is related to the considerable dependence of repeat-pass coherence upon the meteorological (rain, temperature, wind speed) and environmental (soil moisture variations, snow metamorphism) acquisition conditions. Conventional retrieval algorithms require accurate forest inventory data for a dense grid of forest sites to tune models that relate coherence to stem volume to the local conditions. Accurate forest inventory data is, however, a rare commodity that is often not freely available. In this thesis, a fully automated algorithm was developed, based on a synergetic use of the MODIS Vegetation Continuous Field product (Hansen et al., 2002), that allowed the training of the Interferometric Water Cloud Model IWCM (Askne et al., 1997) without further need for forest inventory data. With the new algorithm it was possible to train the IWCM on a frame-by-frame basis and thus to account for the spatial and temporal variability of the meteorological and environmental acquisition conditions. The new algorithm was applied to a multi-seasonal ERS-1/2 tandem dataset covering Northeast China that was acquired between 1995 and 1998 with baselines up to 400 m

    Interferomeetriline tehisavaradar kui vahend turbaalade pinna dĂŒnaamika jĂ€lgimiseks

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneSood on unikaalsed ökosĂŒsteemid, kus turba ladestumise kĂ€igus seotakse pikaajaliselt sĂŒsinikku. Üleilmselt on soodes seotud sĂŒsiniku kogus, mis vĂ”rdub peaaegu poolega hetkel atmosfÀÀris olevast. Tasakaalu sĂŒsiniku sidumise ja lendumise vahel mĂ”jutab soodes kĂ”ige enam veetase, mistĂ”ttu veereĆŸiimi muutudes vĂ”ivad sood muutuda sĂŒsiniku talletajast kasvuhoonegaaside Ă”hku paiskajaks. Tehisavaradar (SAR) on aktiivne mikrolainealas töötav kaugseiresĂŒsteem, mille kasutamine vĂ”imaldaks turbaalade ĂŒlemaailmset seiret. SAR nĂ€eb lĂ€bi pilvede, katab korraga suure ala, on hea ruumilise lahutuse ja tiheda ajalise katvusega. Interferomeetriline SAR (InSAR) on uudne meetod, mis vĂ”imaldab mÔÔta maapinna kĂ”rgusmuutusi, tuginedes radarisignaali pool lĂ€bitava teekonna pikkusete erinevusele kahest samast kohast, aga eri aegadel tehtud pildi vahel. Tulemuseks on kĂ”rgusmuutuse pilt (interferogramm), kĂ”rvalsaaduseks on koherentsuse pilt, mis kirjeldab vĂ”rreldavate piltide ruumimustrite sarnasust. Meetodi kitsaskohaks on suurte kĂ”rgusmuutuste Ă”igesti hindamine. Töö eesmĂ€rk oli katsetada InSAR meetodi kasutusvĂ”imaluse piire ja rakendada uusi teadmisi rabade seirel. Uurisin: 1) raba veetaseme mĂ”ju koherentsusele; 2) freesturba tootmisega kaasnevat pinna muutuse mĂ”ju koherentsusele; 3) InSAR meetodi usaldusvÀÀrsust raba pinna kĂ”rguse muutuse hindamisel. Tulemused nĂ€itavad, et koherentsustest on kasu soode veereĆŸiimi uurimisel, kuid see ei sobi pinnase niiskuse otseseks mÔÔtmiseks. Koherentsust saab kasutada turba tootmise seireks, vĂ”ttes arvesse SAR-ist ja turba tootmise protsessist tulenevaid piiranguid. Töös on visandatud seiremetoodika, mis vĂ”imaldab eristada aktiivseid turbatootmisalasid kasutuses vĂ€lja jÀÀnud aladest ja jĂ€lgida turba tootmise intensiivsust, edendamaks tĂ”husamat ressursikasutust. InSAR meetodil maapinna kĂ”rguse mÔÔtmised tavapĂ€rase 5,6 sentimeetrise lainepikkuse juures ei ole rabas usaldusvÀÀrsed. Katsetatud InSAR meetodid ei suutnud kiiresti toimuvaid suuri kĂ”rgusmuutusi Ă”igesti hinnata. Sarnaselt varasematele uuringutele oleks selline viga jÀÀnud avastamata, kui meil poleks vĂ”rdluseks olnud maapealseid kĂ”rgusandmeid. TĂ”enĂ€oliselt vĂ”iks soos maapinna kĂ”rguse muutuse hindamiseks paremini sobida lĂ€hitulevikku planeeritud pikalainelised (24 cm) radarsatelliidi missioonid.  Peatlands are significant in regard to climate change because peatlands may switch from being a net carbon sink to an emitter of greenhouse gases. The delicate carbon balance in peatlands is controlled by the peatland water table. Peatland soils contain globally nearly as much carbon as a half of what is currently in the atmosphere. Synthetic Aperture Radar (SAR) is an active microwave remote sensing system which has potential for global peatland monitoring. SAR can penetrate through clouds, covers simultaneously a vast area at high spatial resolution and has a short revisit cycle. Interferometric SAR (InSAR) is an emerging technique to measure surface height changes utilising the difference in the path length that the signal travels between SAR acquisitions of the same target from the same orbital position at different times. The resultant deformation image does not show the absolute change in the path length but the result is ambiguously wrapped in cycles corresponding to half of the signal wavelength, complicating estimation of larger changes. A co-product of InSAR processing is the coherence image, describing the similarity of the spatial patterns in the images. The objective of my dissertation is testing the limits of InSAR and, built on it, improving peatland monitoring. It was studied: 1) coherence response to the water table in raised bogs; 2) coherence response to peat surface alteration caused by the milled peat production; 3) reliability of InSAR deformation estimates in open bogs. Based on the results, coherence could be used as aid to understanding of hydrologic conditions in bogs but it is unsuitable for direct moisture retrieval. Coherence can be used to monitor peat extraction, considering intrinsic limitations posed by the SAR and the peat extraction process. The ambiguity problem makes displacement measurements at the conventional 5.6 cm wavelength unreliable in bogs. A solution could be the planned long wavelength (24 cm) SAR missions.https://www.ester.ee/record=b550580

    Generic interferometric synthetic aperture radar atmospheric correction model and its application to co- and post-seismic motions

    Get PDF
    PhD ThesisThe tremendous development of Interferometric Synthetic Aperture Radar (InSAR) missions in recent years facilitates the study of smaller amplitude ground deformation over greater spatial scales using longer time series. However, this poses more challenges for correcting atmospheric effects due to the spatial-temporal variability of atmospheric delays. Previous attempts have used observations from Global Positioning System (GPS) and Numerical Weather Models (NWMs) to separate the atmospheric delays, but they are limited by (i) the availability (and distribution) of GPS stations; (ii) the time difference between NWM and radar observations; and (iii) the difficulties in quantifying their performance. To overcome the abovementioned limitations, we have developed the Iterative Tropospheric Decomposition (ITD) model to reduce the coupling effects of the troposphere turbulence and stratification and hence achieve similar performances over flat and mountainous terrains. Highresolution European Centre for Medium-Range Weather Forecasts (ECMWF) and GPS-derived tropospheric delays were properly integrated by investigating the GPS network geometry and topography variations. These led to a generic atmospheric correction model with a range of notable features: (i) global coverage, (ii) all-weather, all-time usability, (iii) available with a maximum of two-day latency, and (iv) indicators available to assess the model’s performance and feasibility. The generic atmospheric correction model enables the investigation of the small magnitude coseismic deformation of the 2017 Mw-6.4 Nyingchi earthquake from InSAR observations in spite of substantial atmospheric contamination. It can also minimize the temporal correlations of InSAR atmospheric delays so that reliable velocity maps over large spatial extents can be achieved. Its application to the post-seismic motion following the 2016 Kaikoura earthquake shows a success to recover the time-dependent afterslip distribution, which in turn evidences the deep inactive subduction slip mechanism. This procedure can be used to map surface deformation in other scenarios including volcanic eruptions, tectonic rifting, cracking, and city subsidence.This work was supported by a Chinese Scholarship Council studentship. Part of this work was also supported by the UK NERC through the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET)

    Growing stock volume estimation in temperate forsted areas using a fusion approach with SAR Satellites Imagery

    Get PDF
    Forest monitoring plays a central role in the context of global warming mitigation and in the assessment of forest resources. To meet these challenges, significant efforts have been made by scientists to develop new feasible remote sensing techniques for the retrieval of forest parameters. However, much work remains to be done in this area, in particular in establishing global assessments of forest biomass. In this context, this Ph.D. Thesis presents a complete methodology for estimating Growing Stock Volume (GSV) in temperate forested areas using a fusion approach based on Synthetic-Aperture Radar (SAR) satellite imagery. The investigations which were performed focused on the Thuringian Forest, which is located in Central Germany. The satellite data used are composed of an extensive set of L-band (ALOS PALSAR) and X-band (TerraSAR-X, TanDEM-X, Cosmo-SkyMed) images, which were acquired in various sensor configurations (acquisition modes, polarisations, incidence angles). The available ground data consists of a forest inventory delivered by the local forest offices. Weather measurements and a LiDAR DEM complete the datasets. The research showed that together with the topography, the forest structure and weather conditions generally limited the sensitivity of the SAR signal to GSV. The best correlations were obtained with ALOS PALSAR (R2 = 0.61) and TanDEM-X (R2 = 0.72) interferometric coherences. These datasets were chosen for the retrieval of GSV in the Thuringian Forest and led with regressions to an root-mean-square error (RMSE) in the range of 100─200 m3ha-1. As a final achievement of this thesis, a methodology for combining the SAR information was developed. Assuming that there are sufficient and adequate remote sensing data, the proposed fusion approach may increase the biomass maps accuracy, their spatial extension and their updated frequency. These characteristics are essential for the future derivation of accurate, global and robust forest biomass maps

    Evaluation of Multi-frequency Synthetic Aperture Radar for Subsurface Archaeological Prospection in Arid Environments

    Full text link
    The discovery of the subsurface paleochannels in the Saharan Desert with the 1981 Shuttle Imaging Radar (SIR-A) sensor was hugely significant in the field of synthetic aperture radar (SAR) remote sensing. Although previous studies had indicated the ability of microwaves to penetrate the earth’s surface in arid environments, this was the first applicable instance of subsurface imaging using a spaceborne sensor. And the discovery of the ‘radar rivers’ with associated archaeological evidence in this inhospitable environment proved the existence of an earlier less arid paleoclimate that supported past populations. Since the 1980’s SAR subsurface prospection in arid environments has progressed, albeit primarily in the fields of hydrology and geology, with archaeology being investigated to a lesser extent. Currently there is a lack of standardised methods for data acquisition and processing regarding subsurface imaging, difficulties in image interpretation and insufficient supporting quantitative verification. These barriers keep SAR technology from becoming as integral as other remote sensing techniques in archaeological practice The main objective of this thesis is to undertake a multi-frequency SAR analysis across different site types in arid landscapes to evaluate and enhance techniques for analysing SAR within the context of archaeological subsurface prospection. The analysis and associated fieldwork aim to address the gap in the literature regarding field verification of SAR image interpretation and contribute to the understanding of SAR microwave penetration in arid environments. The results presented in this thesis demonstrate successful subsurface imaging of subtle feature(s) at the site of ‘Uqdat al-Bakrah, Oman with X-band data. Because shorter wavelengths are often ignored due to their limited penetration depths as compared to the C-band or L-band data, the effectiveness of X-band sensors in archaeological prospection at this site is significant. In addition, the associated ground penetrating radar and excavation fieldwork undertaken at ‘Uqdat al-Bakrah confirm the image interpretation and support the quantitative information regarding microwave penetration

    Remote Sensing and Geosciences for Archaeology

    Get PDF
    This book collects more than 20 papers, written by renowned experts and scientists from across the globe, that showcase the state-of-the-art and forefront research in archaeological remote sensing and the use of geoscientific techniques to investigate archaeological records and cultural heritage. Very high resolution satellite images from optical and radar space-borne sensors, airborne multi-spectral images, ground penetrating radar, terrestrial laser scanning, 3D modelling, Geographyc Information Systems (GIS) are among the techniques used in the archaeological studies published in this book. The reader can learn how to use these instruments and sensors, also in combination, to investigate cultural landscapes, discover new sites, reconstruct paleo-landscapes, augment the knowledge of monuments, and assess the condition of heritage at risk. Case studies scattered across Europe, Asia and America are presented: from the World UNESCO World Heritage Site of Lines and Geoglyphs of Nasca and Palpa to heritage under threat in the Middle East and North Africa, from coastal heritage in the intertidal flats of the German North Sea to Early and Neolithic settlements in Thessaly. Beginners will learn robust research methodologies and take inspiration; mature scholars will for sure derive inputs for new research and applications
    corecore