1,954 research outputs found

    The Influence of Network Topology on Sound Propagation in Granular Materials

    Full text link
    Granular materials, whose features range from the particle scale to the force-chain scale to the bulk scale, are usually modeled as either particulate or continuum materials. In contrast with either of these approaches, network representations are natural for the simultaneous examination of microscopic, mesoscopic, and macroscopic features. In this paper, we treat granular materials as spatially-embedded networks in which the nodes (particles) are connected by weighted edges obtained from contact forces. We test a variety of network measures for their utility in helping to describe sound propagation in granular networks and find that network diagnostics can be used to probe particle-, curve-, domain-, and system-scale structures in granular media. In particular, diagnostics of meso-scale network structure are reproducible across experiments, are correlated with sound propagation in this medium, and can be used to identify potentially interesting size scales. We also demonstrate that the sensitivity of network diagnostics depends on the phase of sound propagation. In the injection phase, the signal propagates systemically, as indicated by correlations with the network diagnostic of global efficiency. In the scattering phase, however, the signal is better predicted by meso-scale community structure, suggesting that the acoustic signal scatters over local geographic neighborhoods. Collectively, our results demonstrate how the force network of a granular system is imprinted on transmitted waves.Comment: 19 pages, 9 figures, and 3 table

    Communities in Networks

    Full text link
    We survey some of the concepts, methods, and applications of community detection, which has become an increasingly important area of network science. To help ease newcomers into the field, we provide a guide to available methodology and open problems, and discuss why scientists from diverse backgrounds are interested in these problems. As a running theme, we emphasize the connections of community detection to problems in statistical physics and computational optimization.Comment: survey/review article on community structure in networks; published version is available at http://people.maths.ox.ac.uk/~porterm/papers/comnotices.pd

    Graph Theory and Networks in Biology

    Get PDF
    In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss recent work on identifying and modelling the structure of bio-molecular networks, as well as the application of centrality measures to interaction networks and research on the hierarchical structure of such networks and network motifs. Work on the link between structural network properties and dynamics is also described, with emphasis on synchronization and disease propagation.Comment: 52 pages, 5 figures, Survey Pape
    • …
    corecore