327 research outputs found

    Status-Seeking in Hedonic Games with Heterogeneous Players

    Get PDF
    We study hedonic games with heterogeneous player types that reflect her nationality, ethnic background, or skill type. Agents' preferences are dictated by status-seeking where status can be either local or global. The two dimensions of status define the two components of a generalized constant elasticity of substitution utility function. In this setting, we characterize the core as a function of the utility's parameter values and show that in all cases the corresponding cores are non-empty. We further discuss the core stable outcomes in terms of their segregating versus integrating properties.Coalitions, Core, Stability, Status-seeking

    Multi-agent Learning For Game-theoretical Problems

    Get PDF
    Multi-agent systems are prevalent in the real world in various domains. In many multi-agent systems, interaction among agents is inevitable, and cooperation in some form is needed among agents to deal with the task at hand. We model the type of multi-agent systems where autonomous agents inhabit an environment with no global control or global knowledge, decentralized in the true sense. In particular, we consider game-theoretical problems such as the hedonic coalition formation games, matching problems, and Cournot games. We propose novel decentralized learning and multi-agent reinforcement learning approaches to train agents in learning behaviors and adapting to the environments. We use game-theoretic evaluation criteria such as optimality, stability, and resulting equilibria

    Novel Hedonic Games and Stability Notions

    Get PDF
    We present here work on matching problems, namely hedonic games, also known as coalition formation games. We introduce two classes of hedonic games, Super Altruistic Hedonic Games (SAHGs) and Anchored Team Formation Games (ATFGs), and investigate the computational complexity of finding optimal partitions of agents into coalitions, or finding - or determining the existence of - stable coalition structures. We introduce a new stability notion for hedonic games and examine its relation to core and Nash stability for several classes of hedonic games

    Advances in Negotiation Theory: Bargaining, Coalitions and Fairness

    Get PDF
    Bargaining is ubiquitous in real-life. It is a major dimension of political and business activities. It appears at the international level, when governments negotiate on matters ranging from economic issues (such as the removal of trade barriers), to global security (such as fighting against terrorism) to environmental and related issues (e.g. climate change control). What factors determine the outcome of negotiations such as those mentioned above? What strategies can help reach an agreement? How should the parties involved divide the gains from cooperation? With whom will one make alliances? This paper addresses these questions by focusing on a non-cooperative approach to negotiations, which is particularly relevant for the study of international negotiations. By reviewing non-cooperative bargaining theory, non-cooperative coalition theory, and the theory of fair division, this paper will try to identify the connection among these different facets of the same problem in an attempt to facilitate the progress towards a unified framework.Negotiation theory, Bargaining, Coalitions, Fairness, Agreements

    The Spectrum Shortage Problem: Channel Assignment and Cognitive Networks

    Get PDF
    Recent studies have shown that the proliferation of wireless applications and services, experienced in the last decade, is leading to the challenging spectrum shortage problem. We provide a general overview regarding the spectrum shortage problem from the point of view of different technologies. First, we propose solutions based on multi-radio multi-channel wireless mesh networks in order to improve the usage of unlicensed wireless resources. Then, we move our focus on cognitive networks in order to analyze issues and solutions to opportunistically use licensed wireless resources. In wireless mesh networks, the spectrum shortage problem is addressed equipping each device with multiple radios which are turned on different orthogonal channels. We propose G-PaMeLA, which splits in local sub-problems the joint channel assignment and routing problem in multi-radio multi-channel wireless mesh networks. Results demonstrate that G-PaMeLA significantly improves network performance, in terms of packet loss and throughput fairness compared to algorithms in the literature. Unfortunately, even if orthogonal channels are used, wireless mesh networks result in what is called spectrum overcrowding. In order to address the spectrum overcrowding problem, careful analysis on spectrum frequencies has been conducted. These studies identified the possibility of transmitting on licensed channels, which are surprisingly underutilized. With the aim of addressing the resources problem using licensed channels, cognitive access and mesh networks have been developed. In cognitive access networks, we identify as the major problem the self-coexistence, which is the ability to access channels on a non-interfering basis with respect to licensed and unlicensed wireless devices. We propose two game theoretic frameworks which differentiate in having non-cooperative (NoRa) and cooperative (HeCtor) cognitive devices, respectively. Results show that HeCtor achieves higher throughput than NoRa but at the cost of higher computational complexity, which leads to a smaller throughput in cases where rapid changes occur in channels' occupancy. In contrast, NoRa attains the same throughput independent of the variability in channels' occupancy, hence cognitive devices adapt faster to such changes. In cognitive mesh networks, we analyze the coordination problem among cognitive devices because it is the major concern in implementing mesh networks in environments which change in time and space. We propose Connor, a clustering algorithm to address the coordination problem, which establishes common local control channels. Connor, in contrast with existing algorithms in the literature, does not require synchronization among cognitive mesh devices and allows a fast re-clustering when changes occur in channel's occupancy by licensed users. Results show that Connor performs better than existing algorithms in term of number of channels used for control purposes and time to reach and stay on stable configurations

    The Value of Flexibility in the Italian Water Service Sector: A Real Option Analysis

    Get PDF
    We analyze the optimal investment strategy of a monopolist which has subscribed a concession contract to provide a public utility, i.e. water service. We present a strategic model in which a monopolist chooses both the timing of the investment and the capacity. We focus not only on the value of the immediate investment, but rather on the value of the investment opportunity. We then extend the model to two interdependent projects, where investing in the first project provides the opportunity to acquire the benefits of the new investment by making a new outlay. We show that flexibility to defer an investment may generate, ceteris paribus, additional profits which may induce positive effects in terms of policy and consumers surplus.Irreversible investment, Flexibility to defer, Capacity expansion choice

    Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas

    Get PDF
    Fisheries managers in the United States are required to identify and mitigate the adverse impacts of fishing activity on essential fish habitat (EFH). There are additional concerns that the viability of noncommercial species, animals that are habitat dependent and/or are themselves constituents of fishery habitat may still be threatened. We consider a cap-and-trade system for habitat conservation, individual habitat quotas for fisheries, to achieve habitat conservation and species protection goals cost effectively. Individual quotas of habitat impact units (HIUs) would be distributed to fishers with an aggregate quota set to maintain a target habitat “stock” of EFH conservation. Using a dynamic, spatially explicit fishery simulation model we explore the efficiency and cost effectiveness of an IHQ policy versus alternative marine protected area (MPA) configurations, at reducing the risk of extinguishing a habitat dependent species of unknown spatial distribution. Our findings indicate that an IHQ policy with a conservatively established habitat target is better suited to the protection of non-target species than a rotating or fixed MPA policy.Fisheries management, Individual transferable quota, ITQ, Individual habitat quota, IHQ, Essential fish habitat, EFH, Marine protected areas, MPA, Non-target species

    Game-Theoretic Foundations for Forming Trusted Coalitions of Multi-Cloud Services in the Presence of Active and Passive Attacks

    Get PDF
    The prominence of cloud computing as a common paradigm for offering Web-based services has led to an unprecedented proliferation in the number of services that are deployed in cloud data centers. In parallel, services' communities and cloud federations have gained an increasing interest in the recent past years due to their ability to facilitate the discovery, composition, and resource scaling issues in large-scale services' markets. The problem is that the existing community and federation formation solutions deal with services as traditional software systems and overlook the fact that these services are often being offered as part of the cloud computing technology, which poses additional challenges at the architectural, business, and security levels. The motivation of this thesis stems from four main observations/research gaps that we have drawn through our literature reviews and/or experiments, which are: (1) leading cloud services such as Google and Amazon do not have incentives to group themselves into communities/federations using the existing community/federation formation solutions; (2) it is quite difficult to find a central entity that can manage the community/federation formation process in a multi-cloud environment; (3) if we allow services to rationally select their communities/federations without considering their trust relationships, these services might have incentives to structure themselves into communities/federations consisting of a large number of malicious services; and (4) the existing intrusion detection solutions in the domain of cloud computing are still ineffective in capturing advanced multi-type distributed attacks initiated by communities/federations of attackers since they overlook the attacker's strategies in their design and ignore the cloud system's resource constraints. This thesis aims to address these gaps by (1) proposing a business-oriented community formation model that accounts for the business potential of the services in the formation process to motivate the participation of services of all business capabilities, (2) introducing an inter-cloud trust framework that allows services deployed in one or disparate cloud centers to build credible trust relationships toward each other, while overcoming the collusion attacks that occur to mislead trust results even in extreme cases wherein attackers form the majority, (3) designing a trust-based game theoretical model that enables services to distributively form trustworthy multi-cloud communities wherein the number of malicious services is minimal, (4) proposing an intra-cloud trust framework that allows the cloud system to build credible trust relationships toward the guest Virtual Machines (VMs) running cloud-based services using objective and subjective trust sources, (5) designing and solving a trust-based maxmin game theoretical model that allows the cloud system to optimally distribute the detection load among VMs within a limited budget of resources, while considering Distributed Denial of Service (DDoS) attacks as a practical scenario, and (6) putting forward a resource-aware comprehensive detection and prevention system that is able to capture and prevent advanced simultaneous multi-type attacks within a limited amount of resources. We conclude the thesis by uncovering some persisting research gaps that need further study and investigation in the future

    Does Hazardous Waste Matter? Evidence from the Housing Market and the Superfund Program

    Get PDF
    Approximately 30billion(200030 billion (2000) has been spent on Superfund clean-ups of hazardous waste sites, and remediation efforts are incomplete at roughly half of the 1,500 Superfund sites. This study estimates the effect of Superfund clean-ups on local housing price appreciation. We compare housing price growth in the areas surrounding the first 400 hazardous waste sites to be cleaned up through the Superfund program to the areas surrounding the 290 sites that narrowly missed qualifying for these clean-ups. We cannot reject that the clean-ups had no effect on local housing price growth, nearly two decades after these sites became eligible for them. This finding is robust to a series of specification checks, including the application of a quasi-experimental regression discontinuity design based on knowledge of the selection rule. Overall, the preferred estimates suggest that the benefits of Superfund clean-ups as measured through the housing market are substantially lower than the $43 million mean cost of Superfund clean-ups.Valuation of environmental goods, Hazardous waste sites, Environmental regulation, Regression discontinuity, Superfound, Externalities
    • 

    corecore