16 research outputs found

    Integrability, rational solitons and symmetries for nonlinear systems in Biology and Materials Physics

    Get PDF
    [ES] Los sistemas no lineales constituyen un tema de investigación de creciente interés en las últimas décadas dada su versatilidad en la descripción de fenómenos físicos en diversos campos de estudio. Generalmente, dichos fenómenos vienen modelizados por ecuaciones diferenciales no lineales, cuya estructura matemática ha demostrado ser sumamente rica, aunque de gran complejidad respecto a su análisis. Dentro del conjunto de los sistemas no lineales, cabe destacar un reducido grupo, pero a la vez selecto, que se distingue por las propiedades extraordinarias que presenta: los denominados sistemas integrables. La presente tesis doctoral se centra en el estudio de algunas de las propiedades más relevantes observadas para los sistemas integrables. En esta tesis se pretende proporcionar un marco teórico unificado que permita abordar ecuaciones diferenciales no lineales que potencialmente puedan ser consideradas como integrables. En particular, el análisis de integralidad de dichas ecuaciones se realiza a través de técnicas basadas en la Propiedad de Painlevé, en combinación con la subsiguiente búsqueda de los problemas espectrales asociados y la identificación de soluciones analíticas de naturaleza solitónica. El método de la variedad singular junto con las transformaciones de auto-Bäcklund y de Darboux jugarán un papel fundamental en este estudio. Además, también se lleva a cabo un análisis complementario basado en las simetrías de Lie y reducciones de similaridad, que nos permitirán estudiar desde esta nueva perspectiva los problemas espectrales asociados. Partiendo de la archiconocida ecuación de Schrödinger no lineal, se han investigado diferentes generalizaciones integrables de dicha ecuación con numerosas aplicaciones en diversos campos científicos, como la Física Matemática, Física de Materiales o Biología.[EN] Nonlinear systems emerge as an active research topic of growing interest during the last decades due to their versatility when it comes to describing physical phenomena. Such scenarios are typically modelled by nonlinear differential equations, whose mathematical structure has proved to be incredibly rich, but highly nontrivial to treat. In particular, a narrow but surprisingly special group of this kind stands out: the so-called integrable systems. The present doctoral thesis focuses on the study of some of the extraordinary properties observed for integrable systems. The ultimate purpose of this dissertation lies in providing a unified theoretical framework that allows us to approach nonlinear differential equations that may potentially be considered as integrable. In particular, their integrability characterization is addressed by means of Painlevé analysis, in conjunction with the subsequent quest of the associated spectral problems and the identification of analytical solutions of solitonic nature. The singular manifold method together with auto-Bäckund and Darboux transformations play a critical role in this setting. In addition, a complementary methodology based on Lie symmetries and similarity reductions is proposed so as to analyze integrable systems by studying the symmetry properties of their associated spectral problems. Taking the ubiquitous nonlinear Schrödinger equation as the starting point, we have investigated several integrable generalizations of this equation that possess copious applications in distinct scientific fields, such as Mathematical Physics, Material Sciences and Biology

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Quantum magnonics: when magnon spintronics meets quantum information science

    Get PDF
    Spintronics and quantum information science are two promising candidates for innovating information processing technologies. The combination of these two fields enables us to build solid-state platforms for studying quantum phenomena and for realizing multi-functional quantum tasks. For a long time, however, the intersection of these two fields was limited. This situation has changed significantly over the last few years because of the remarkable progress in coding and processing information using magnons. On the other hand, significant advances in understanding the entanglement of quasi-particles and in designing high-quality qubits and photonic cavities for quantum information processing provide physical platforms to integrate magnons with quantum systems. From these endeavours, the highly interdisciplinary field of quantum magnonics emerges, which combines spintronics, quantum optics and quantum information science.Here, we give an overview of the recent developments concerning the quantum states of magnons and their hybridization with mature quantum platforms. First, we review the basic concepts of magnons and quantum entanglement and discuss the generation and manipulation of quantum states of magnons, such as single-magnon states, squeezed states and quantum many-body states including Bose-Einstein condensation and the resulting spin superfluidity. We discuss how magnonic systems can be integrated and entangled with quantum platforms including cavity photons, superconducting qubits, nitrogen-vacancy centers, and phonons for coherent information transfer and collaborative information processing. The implications of these hybrid quantum systems for non-Hermitian physics and parity-time symmetry are highlighted, together with applications in quantum memories and high-precision measurements. Finally, we present an outlook on the opportunities in quantum magnonics.Comment: 93 pages, 35 figures, Physics Reports (in press

    Mathematical and Numerical Aspects of Dynamical System Analysis

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore