61,247 research outputs found

    On Local Equivalence, Surface Code States and Matroids

    Full text link
    Recently, Ji et al disproved the LU-LC conjecture and showed that the local unitary and local Clifford equivalence classes of the stabilizer states are not always the same. Despite the fact this settles the LU-LC conjecture, a sufficient condition for stabilizer states that violate the LU-LC conjecture is missing. In this paper, we investigate further the properties of stabilizer states with respect to local equivalence. Our first result shows that there exist infinitely many stabilizer states which violate the LU-LC conjecture. In particular, we show that for all numbers of qubits n≥28n\geq 28, there exist distance two stabilizer states which are counterexamples to the LU-LC conjecture. We prove that for all odd n≥195n\geq 195, there exist stabilizer states with distance greater than two which are LU equivalent but not LC equivalent. Two important classes of stabilizer states that are of great interest in quantum computation are the cluster states and stabilizer states of the surface codes. To date, the status of these states with respect to the LU-LC conjecture was not studied. We show that, under some minimal restrictions, both these classes of states preclude any counterexamples. In this context, we also show that the associated surface codes do not have any encoded non-Clifford transversal gates. We characterize the CSS surface code states in terms of a class of minor closed binary matroids. In addition to making connection with an important open problem in binary matroid theory, this characterization does in some cases provide an efficient test for CSS states that are not counterexamples.Comment: LaTeX, 13 pages; Revised introduction, minor changes and corrections mainly in section V

    Minimal instances for toric code ground states

    Full text link
    A decade ago Kitaev's toric code model established the new paradigm of topological quantum computation. Due to remarkable theoretical and experimental progress, the quantum simulation of such complex many-body systems is now within the realms of possibility. Here we consider the question, to which extent the ground states of small toric code systems differ from LU-equivalent graph states. We argue that simplistic (though experimentally attractive) setups obliterate the differences between the toric code and equivalent graph states; hence we search for the smallest setups on the square- and triangular lattice, such that the quasi-locality of the toric code hamiltonian becomes a distinctive feature. To this end, a purely geometric procedure to transform a given toric code setup into an LC-equivalent graph state is derived. In combination with an algorithmic computation of LC-equivalent graph states, we find the smallest non-trivial setup on the square lattice to contain 5 plaquettes and 16 qubits; on the triangular lattice the number of plaquettes and qubits is reduced to 4 and 9, respectively.Comment: 14 pages, 11 figure

    Protected gates for topological quantum field theories

    Get PDF
    We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators --- for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically-local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons; in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.Comment: 50 pages, many figures, v3: updated to match published versio

    Topological fault-tolerance in cluster state quantum computation

    Get PDF
    We describe a fault-tolerant version of the one-way quantum computer using a cluster state in three spatial dimensions. Topologically protected quantum gates are realized by choosing appropriate boundary conditions on the cluster. We provide equivalence transformations for these boundary conditions that can be used to simplify fault-tolerant circuits and to derive circuit identities in a topological manner. The spatial dimensionality of the scheme can be reduced to two by converting one spatial axis of the cluster into time. The error threshold is 0.75% for each source in an error model with preparation, gate, storage and measurement errors. The operational overhead is poly-logarithmic in the circuit size.Comment: 20 pages, 12 figure

    Quantum computation with Turaev-Viro codes

    Full text link
    The Turaev-Viro invariant for a closed 3-manifold is defined as the contraction of a certain tensor network. The tensors correspond to tetrahedra in a triangulation of the manifold, with values determined by a fixed spherical category. For a manifold with boundary, the tensor network has free indices that can be associated to qudits, and its contraction gives the coefficients of a quantum error-correcting code. The code has local stabilizers determined by Levin and Wen. For example, applied to the genus-one handlebody using the Z_2 category, this construction yields the well-known toric code. For other categories, such as the Fibonacci category, the construction realizes a non-abelian anyon model over a discrete lattice. By studying braid group representations acting on equivalence classes of colored ribbon graphs embedded in a punctured sphere, we identify the anyons, and give a simple recipe for mapping fusion basis states of the doubled category to ribbon graphs. We explain how suitable initial states can be prepared efficiently, how to implement braids, by successively changing the triangulation using a fixed five-qudit local unitary gate, and how to measure the topological charge. Combined with known universality results for anyonic systems, this provides a large family of schemes for quantum computation based on local deformations of stabilizer codes. These schemes may serve as a starting point for developing fault-tolerance schemes using continuous stabilizer measurements and active error-correction.Comment: 53 pages, LaTeX + 199 eps figure

    A fault-tolerant one-way quantum computer

    Full text link
    We describe a fault-tolerant one-way quantum computer on cluster states in three dimensions. The presented scheme uses methods of topological error correction resulting from a link between cluster states and surface codes. The error threshold is 1.4% for local depolarizing error and 0.11% for each source in an error model with preparation-, gate-, storage- and measurement errors.Comment: 26 page

    Virtual Knot Cobordism

    Full text link
    This paper defines a theory of cobordism for virtual knots and studies this theory for standard and rotational virtual knots and links. Non-trivial examples of virtual slice knots are given. Determinations of the four-ball genus of positive virtual knots are given using the results of a companion paper by the author and Heather Dye and Aaron Kaestner. Problems related to band-passing are explained, and a theory of isotopy of virtual surfaces is formulated in terms of a generalization of the Yoshikawa moves.Comment: 32 pages, 43 figures, LaTeX documen
    • …
    corecore