32 research outputs found

    Efficient high order semi-implicit time discretization and local discontinuous Galerkin methods for highly nonlinear PDEs

    Get PDF
    International audienceIn this paper, we develop a high order semi-implicit time discretization method for highly nonlinear PDEs, which consist of the surface diffusion and Willmore flow of graphs, the Cahn-Hilliard equation and the Allen-Cahn/Cahn-Hilliard system. These PDEs are high order in spatial derivatives, which motivates us to develop implicit or semi-implicit time marching methods to relax the severe time step restriction for stability of explicit methods. In addition, these PDEs are also highly nonlinear, fully implicit method will incredibly increase the difficulty of implementation. In particular, we can not well separate the stiff and non-stiff components for these problems, which leads to the traditional implicit-explicit methods nearly meaningless. In this paper, a high order semi-implicit time marching method and the local discontinuous Galerkin spatial method are coupled together to achieve high order accuracy in both space and time, and to enhance the efficiency of the proposed approaches, the resulting linear or nonlinear algebraic systems are solved by multigrid solver. Numerical simulation results in one and two dimensions are presented to illustrate that the combination of the local discontinuous Galerkin method for spatial approximation, semi-implicit temporal integration with the multigrid solver provides a practical and efficient approach when solving this family of problems

    A p-ADAPTIVE LOCAL DISCONTINUOUS GALERKIN LEVEL SET METHOD FOR WILLMORE FLOW

    Get PDF
    International audienceThe level set method is often used to capture interface behavior in two or three dimensions. In this paper, we present a combination of local discontinuous Galerkin (LDG) method and level set method for simulating Willmore flow. The LDG scheme is energy stable and mass conservative, which are good properties comparing with other numerical methods. In addition, to enhance the efficiency of the proposed LDG scheme and level set method, we employ a p-adaptive local discontinuous Galerkin technique, which applies high order polynomial approximations around the zero level set and low order ones away from the zero level set. A major advantage of the level set method is that the topological changes are well defined and easily performed. In particular, given the stiffness of Willmore flow, a high order semi-implicit Runge-Kutta method is employed for time discretization, which allows larger time step. The equations at the implicit time level are linear, we demonstrate an efficient and practical multi-grid solver to solve the equations. Numerical examples are given to illustrate the combination of the LDG scheme and level set method provides an efficient and practical approach when simulating the Willmore flow

    Geometric partial differential equations: Theory, numerics and applications

    Get PDF
    This workshop concentrated on partial differential equations involving stationary and evolving surfaces in which geometric quantities play a major role. Mutual interest in this emerging field stimulated the interaction between analysis, numerical solution, and applications

    Geometric partial differential equations: Surface and bulk processes

    Get PDF
    The workshop brought together experts representing a wide range of topics in geometric partial differential equations ranging from analyis over numerical simulation to real-life applications. The main themes of the conference were the analysis of curvature energies, new developments in pdes on surfaces and the treatment of coupled bulk/surface problems

    Mini-Workshop: Interface Problems in Computational Fluid Dynamics

    Get PDF
    Multiple difficulties are encountered when designing algorithms to simulate flows having free surfaces, embedded particles, or elastic containers. One difficulty common to all of these problems is that the associated interfaces are Lagrangian in character, while the fluid equations are naturally posed in the Eulerian frame. This workshop explores different approaches and algorithms developed to resolve these issues

    New Directions in Simulation, Control and Analysis for Interfaces and Free Boundaries

    Get PDF
    The field of mathematical and numerical analysis of systems of nonlinear partial differential equations involving interfaces and free boundaries is a flourishing area of research. Many such systems arise from mathematical models in material science, fluid dynamics and biology, for example phase separation in alloys, epitaxial growth, dynamics of multiphase fluids, evolution of cell membranes and in industrial processes such as crystal growth. The governing equations for the dynamics of the interfaces in many of these applications involve surface tension expressed in terms of the mean curvature and a driving force. Here the forcing terms depend on variables that are solutions of additional partial differential equations which hold either on the interface itself or in the surrounding bulk regions. Often in applications of these mathematical models, suitable performance indices and appropriate control actions have to be specified. Mathematically this leads to optimization problems with partial differential equation constraints including free boundaries. Because of the maturity of the field of computational free boundary problems it is now timely to consider such control problems
    corecore