503 research outputs found

    A survey on real-time 3D scene reconstruction with SLAM methods in embedded systems

    Full text link
    The 3D reconstruction of simultaneous localization and mapping (SLAM) is an important topic in the field for transport systems such as drones, service robots and mobile AR/VR devices. Compared to a point cloud representation, the 3D reconstruction based on meshes and voxels is particularly useful for high-level functions, like obstacle avoidance or interaction with the physical environment. This article reviews the implementation of a visual-based 3D scene reconstruction pipeline on resource-constrained hardware platforms. Real-time performances, memory management and low power consumption are critical for embedded systems. A conventional SLAM pipeline from sensors to 3D reconstruction is described, including the potential use of deep learning. The implementation of advanced functions with limited resources is detailed. Recent systems propose the embedded implementation of 3D reconstruction methods with different granularities. The trade-off between required accuracy and resource consumption for real-time localization and reconstruction is one of the open research questions identified and discussed in this paper

    Collaborative autonomy in heterogeneous multi-robot systems

    Get PDF
    As autonomous mobile robots become increasingly connected and widely deployed in different domains, managing multiple robots and their interaction is key to the future of ubiquitous autonomous systems. Indeed, robots are not individual entities anymore. Instead, many robots today are deployed as part of larger fleets or in teams. The benefits of multirobot collaboration, specially in heterogeneous groups, are multiple. Significantly higher degrees of situational awareness and understanding of their environment can be achieved when robots with different operational capabilities are deployed together. Examples of this include the Perseverance rover and the Ingenuity helicopter that NASA has deployed in Mars, or the highly heterogeneous robot teams that explored caves and other complex environments during the last DARPA Sub-T competition. This thesis delves into the wide topic of collaborative autonomy in multi-robot systems, encompassing some of the key elements required for achieving robust collaboration: solving collaborative decision-making problems; securing their operation, management and interaction; providing means for autonomous coordination in space and accurate global or relative state estimation; and achieving collaborative situational awareness through distributed perception and cooperative planning. The thesis covers novel formation control algorithms, and new ways to achieve accurate absolute or relative localization within multi-robot systems. It also explores the potential of distributed ledger technologies as an underlying framework to achieve collaborative decision-making in distributed robotic systems. Throughout the thesis, I introduce novel approaches to utilizing cryptographic elements and blockchain technology for securing the operation of autonomous robots, showing that sensor data and mission instructions can be validated in an end-to-end manner. I then shift the focus to localization and coordination, studying ultra-wideband (UWB) radios and their potential. I show how UWB-based ranging and localization can enable aerial robots to operate in GNSS-denied environments, with a study of the constraints and limitations. I also study the potential of UWB-based relative localization between aerial and ground robots for more accurate positioning in areas where GNSS signals degrade. In terms of coordination, I introduce two new algorithms for formation control that require zero to minimal communication, if enough degree of awareness of neighbor robots is available. These algorithms are validated in simulation and real-world experiments. The thesis concludes with the integration of a new approach to cooperative path planning algorithms and UWB-based relative localization for dense scene reconstruction using lidar and vision sensors in ground and aerial robots

    Learning Correspondence Structures for Person Re-identification

    Full text link
    This paper addresses the problem of handling spatial misalignments due to camera-view changes or human-pose variations in person re-identification. We first introduce a boosting-based approach to learn a correspondence structure which indicates the patch-wise matching probabilities between images from a target camera pair. The learned correspondence structure can not only capture the spatial correspondence pattern between cameras but also handle the viewpoint or human-pose variation in individual images. We further introduce a global constraint-based matching process. It integrates a global matching constraint over the learned correspondence structure to exclude cross-view misalignments during the image patch matching process, hence achieving a more reliable matching score between images. Finally, we also extend our approach by introducing a multi-structure scheme, which learns a set of local correspondence structures to capture the spatial correspondence sub-patterns between a camera pair, so as to handle the spatial misalignments between individual images in a more precise way. Experimental results on various datasets demonstrate the effectiveness of our approach.Comment: IEEE Trans. Image Processing, vol. 26, no. 5, pp. 2438-2453, 2017. The project page for this paper is available at http://min.sjtu.edu.cn/lwydemo/personReID.htm arXiv admin note: text overlap with arXiv:1504.0624

    The Revisiting Problem in Simultaneous Localization and Mapping: A Survey on Visual Loop Closure Detection

    Full text link
    Where am I? This is one of the most critical questions that any intelligent system should answer to decide whether it navigates to a previously visited area. This problem has long been acknowledged for its challenging nature in simultaneous localization and mapping (SLAM), wherein the robot needs to correctly associate the incoming sensory data to the database allowing consistent map generation. The significant advances in computer vision achieved over the last 20 years, the increased computational power, and the growing demand for long-term exploration contributed to efficiently performing such a complex task with inexpensive perception sensors. In this article, visual loop closure detection, which formulates a solution based solely on appearance input data, is surveyed. We start by briefly introducing place recognition and SLAM concepts in robotics. Then, we describe a loop closure detection system's structure, covering an extensive collection of topics, including the feature extraction, the environment representation, the decision-making step, and the evaluation process. We conclude by discussing open and new research challenges, particularly concerning the robustness in dynamic environments, the computational complexity, and scalability in long-term operations. The article aims to serve as a tutorial and a position paper for newcomers to visual loop closure detection.Comment: 25 pages, 15 figure

    Visual Place Recognition in Changing Environments

    Get PDF
    Localization is an essential capability of mobile robots and place recognition is an important component of localization. Only having precise localization, robots can reliably plan, navigate and understand the environment around them. The main task of visual place recognition algorithms is to recognize based on the visual input if the robot has seen previously a given place in the environment. Cameras are one of the popular sensors robots get information from. They are lightweight, affordable, and provide detailed descriptions of the environment in the form of images. Cameras are shown to be useful for the vast variety of emerging applications, from virtual and augmented reality applications to autonomous cars or even fleets of autonomous cars. All these applications need precise localization. Nowadays, the state-of-the-art methods are able to reliably estimate the position of the robots using image streams. One of the big challenges still is the ability to localize a camera given an image stream in the presence of drastic visual appearance changes in the environment. Visual appearance changes may be caused by a variety of different reasons, starting from camera-related factors, such as changes in exposure time, camera position-related factors, e.g. the scene is observed from a different position or viewing angle, occlusions, as well as factors that stem from natural sources, for example seasonal changes, different weather conditions, illumination changes, etc. These effects change the way the same place in the environments appears in the image and can lead to situations where it becomes hard even for humans to recognize the places. Also, the performance of the traditional visual localization approaches, such as FABMAP or DBow, decreases dramatically in the presence of strong visual appearance changes. The techniques presented in this thesis aim at improving visual place recognition capabilities for robotic systems in the presence of dramatic visual appearance changes. To reduce the effect of visual changes on image matching performance, we exploit sequences of images rather than individual images. This becomes possible as robotic systems collect data sequentially and not in random order. We formulate the visual place recognition problem under strong appearance changes as a problem of matching image sequences collected by a robotic system at different points in time. A key insight here is the fact that matching sequences reduces the ambiguities in the data associations. This allows us to establish image correspondences between different sequences and thus recognize if two images represent the same place in the environment. To perform a search for image correspondences, we construct a graph that encodes the potential matches between the sequences and at the same time preserves the sequentiality of the data. The shortest path through such a data association graph provides the valid image correspondences between the sequences. Robots operating reliably in an environment should be able to recognize a place in an online manner and not after having recorded all data beforehand. As opposed to collecting image sequences and then determining the associations between the sequences offline, a real-world system should be able to make a decision for every incoming image. In this thesis, we therefore propose an algorithm that is able to perform visual place recognition in changing environments in an online fashion between the query and the previously recorded reference sequences. Then, for every incoming query image, our algorithm checks if the robot is in the previously seen environment, i.e. there exists a matching image in the reference sequence, as well as if the current measurement is consistent with previously obtained query images. Additionally, to be able to recognize places in an online manner, a robot needs to recognize the fact that it has left the previously mapped area as well as relocalize when it re-enters environment covered by the reference sequence. Thus, we relax the assumption that the robot should always travel within the previously mapped area and propose an improved graph-based matching procedure that allows for visual place recognition in case of partially overlapping image sequences. To achieve a long-term autonomy, we further increase the robustness of our place recognition algorithm by incorporating information from multiple image sequences, collected along different overlapping and non-overlapping routes. This allows us to grow the coverage of the environment in terms of area as well as various scene appearances. The reference dataset then contains more images to match against and this increases the probability of finding a matching image, which can lead to improved localization. To be able to deploy a robot that performs localization in large scaled environments over extended periods of time, however, collecting a reference dataset may be a tedious, resource consuming and in some cases intractable task. Avoiding an explicit map collection stage fosters faster deployment of robotic systems in the real world since no map has to be collected beforehand. By using our visual place recognition approach the map collection stage can be skipped, as we are able to incorporate the information from a publicly available source, e.g., from Google Street View, into our framework due to its general formulation. This automatically enables us to perform place recognition on already existing publicly available data and thus avoid costly mapping phase. In this thesis, we additionally show how to organize the images from the publicly available source into the sequences to perform out-of-the-box visual place recognition without previously collecting the otherwise required reference image sequences at city scale. All approaches described in this thesis have been published in peer-reviewed conference papers and journal articles. In addition to that, most of the presented contributions have been released publicly as open source software

    RANSAC for Robotic Applications: A Survey

    Get PDF
    Random Sample Consensus, most commonly abbreviated as RANSAC, is a robust estimation method for the parameters of a model contaminated by a sizable percentage of outliers. In its simplest form, the process starts with a sampling of the minimum data needed to perform an estimation, followed by an evaluation of its adequacy, and further repetitions of this process until some stopping criterion is met. Multiple variants have been proposed in which this workflow is modified, typically tweaking one or several of these steps for improvements in computing time or the quality of the estimation of the parameters. RANSAC is widely applied in the field of robotics, for example, for finding geometric shapes (planes, cylinders, spheres, etc.) in cloud points or for estimating the best transformation between different camera views. In this paper, we present a review of the current state of the art of RANSAC family methods with a special interest in applications in robotics.This work has been partially funded by the Basque Government, Spain, under Research Teams Grant number IT1427-22 and under ELKARTEK LANVERSO Grant number KK-2022/00065; the Spanish Ministry of Science (MCIU), the State Research Agency (AEI), the European Regional Development Fund (FEDER), under Grant number PID2021-122402OB-C21 (MCIU/AEI/FEDER, UE); and the Spanish Ministry of Science, Innovation and Universities, under Grant FPU18/04737

    Toward Global Localization of Unmanned Aircraft Systems using Overhead Image Registration with Deep Learning Convolutional Neural Networks

    Get PDF
    Global localization, in which an unmanned aircraft system (UAS) estimates its unknown current location without access to its take-off location or other locational data from its flight path, is a challenging problem. This research brings together aspects from the remote sensing, geoinformatics, and machine learning disciplines by framing the global localization problem as a geospatial image registration problem in which overhead aerial and satellite imagery serve as a proxy for UAS imagery. A literature review is conducted covering the use of deep learning convolutional neural networks (DLCNN) with global localization and other related geospatial imagery applications. Differences between geospatial imagery taken from the overhead perspective and terrestrial imagery are discussed, as well as difficulties in using geospatial overhead imagery for image registration due to a lack of suitable machine learning datasets. Geospatial analysis is conducted to identify suitable areas for future UAS imagery collection. One of these areas, Jerusalem northeast (JNE) is selected as the area of interest (AOI) for this research. Multi-modal, multi-temporal, and multi-resolution geospatial overhead imagery is aggregated from a variety of publicly available sources and processed to create a controlled image dataset called Jerusalem northeast rural controlled imagery (JNE RCI). JNE RCI is tested with handcrafted feature-based methods SURF and SIFT and a non-handcrafted feature-based pre-trained fine-tuned VGG-16 DLCNN on coarse-grained image registration. Both handcrafted and non-handcrafted feature based methods had difficulty with the coarse-grained registration process. The format of JNE RCI is determined to be unsuitable for the coarse-grained registration process with DLCNNs and the process to create a new supervised machine learning dataset, Jerusalem northeast machine learning (JNE ML) is covered in detail. A multi-resolution grid based approach is used, where each grid cell ID is treated as the supervised training label for that respective resolution. Pre-trained fine-tuned VGG-16 DLCNNs, two custom architecture two-channel DLCNNs, and a custom chain DLCNN are trained on JNE ML for each spatial resolution of subimages in the dataset. All DLCNNs used could more accurately coarsely register the JNE ML subimages compared to the pre-trained fine-tuned VGG-16 DLCNN on JNE RCI. This shows the process for creating JNE ML is valid and is suitable for using machine learning with the coarse-grained registration problem. All custom architecture two-channel DLCNNs and the custom chain DLCNN were able to more accurately coarsely register the JNE ML subimages compared to the fine-tuned pre-trained VGG-16 approach. Both the two-channel custom DLCNNs and the chain DLCNN were able to generalize well to new imagery that these networks had not previously trained on. Through the contributions of this research, a foundation is laid for future work to be conducted on the UAS global localization problem within the rural forested JNE AOI

    Secure Encoded Instruction Graphs for End-to-End Data Validation in Autonomous Robots

    Get PDF
    As autonomous robots become increasingly ubiquitous, more attention is being paid to the security of robotic operation. Autonomous robots can be seen as cyber-physical systems that transverse the virtual realm and operate in the human dimension. As a consequence, securing the operation of autonomous robots goes beyond securing data, from sensor input to mission instructions, towards securing the interaction with their environment. There is a lack of research towards methods that would allow a robot to ensure that both its sensors and actuators are operating correctly without external feedback. This paper introduces a robotic mission encoding method that serves as an end-to-end validation framework for autonomous robots. In particular, we put our framework into practice with a proof of concept describing a novel map encoding method that allows robots to navigate an objective environment with almost-zero a priori knowledge of it, and to validate operational instructions. We also demonstrate the applicability of our framework through experiments with real robots for two different map encoding methods. The encoded maps inherit all the advantages of traditional landmark-based navigation, with the addition of cryptographic hashes that enable end-to-end information validation. This end-to-end validation can be applied to virtually any aspect of robotic operation where there is a predefined set of operations or instructions given to the robot
    • …
    corecore