442 research outputs found

    Local decoding and testing for homomorphisms

    Get PDF
    Abstract Locally decodable codes (LDCs) have played a central role in many recent results in theoretical computer science. The role of finite fields, and in particular, low-degree polynomials over finite fields, in the construction of these objects is well studied. However the role of group homomorphisms in the construction of such codes is not as widely studied. Here we initiate a systematic study of local decoding of codes based on group homomorphisms. We give an efficient list decoder for the class of homomorphisms from any abelian group G to a fixed abelian group H. The running time of this algorithm is bounded by a polynomial in log |G| and an agreement parameter, where the degree of the polynomial depends on H. Central to this algorithmic result is a combinatorial result bounding the number of homomorphisms that have large agreement with any function from G to H. Our results give a new generalization of the classical work of Goldreich and Levin, and give new abstractions of the list decoder of Sudan, Trevisan and Vadhan. As a by-product we also derive a simple(r) proof of the local testability (beyond the Blum-Luby-Rubinfeld bounds) of homomorphisms mapping Z n p to Z p , first shown by M. Kiwi

    List decoding group homomorphisms between supersolvable groups

    Get PDF
    We show that the set of homomorphisms between two supersolvable groups can be locally list decoded up to the minimum distance of the code, extending the results of Dinur et al who studied the case where the groups are abelian. Moreover, when specialized to the abelian case, our proof is more streamlined and gives a better constant in the exponent of the list size. The constant is improved from about 3.5 million to 105.Comment: 11 page

    Group homomorphisms as error correcting codes

    Get PDF
    We investigate the minimum distance of the error correcting code formed by the homomorphisms between two finite groups GG and HH. We prove some general structural results on how the distance behaves with respect to natural group operations, such as passing to subgroups and quotients, and taking products. Our main result is a general formula for the distance when GG is solvable or HH is nilpotent, in terms of the normal subgroup structure of GG as well as the prime divisors of ∣G∣|G| and ∣H∣|H|. In particular, we show that in the above case, the distance is independent of the subgroup structure of HH. We complement this by showing that, in general, the distance depends on the subgroup structure GG.Comment: 13 page

    Local list decoding of homomorphisms

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (leaves 47-49).We investigate the local-list decodability of codes whose codewords are group homomorphisms. The study of such codes was intiated by Goldreich and Levin with the seminal work on decoding the Hadamard code. Many of the recent abstractions of their initial algorithm focus on Locally Decodable Codes (LDC's) over finite fields. We derive our algorithmic approach from the list decoding of the Reed-Muller code over finite fields proposed by Sudan, Trevisan and Vadhan. Given an abelian group G and a fixed abelian group H, we give combinatorial bounds on the number of homomorphisms that have agreement 6 with an oracle-access function f : G --> H. Our bounds are polynomial in , where the degree of the polynomial depends on H. Also, depends on the distance parameter of the code, namely we consider to be slightly greater than 1-minimum distance. Furthermore, we give a local-list decoding algorithm for the homomorphisms that agree on a 3 fraction of the domain with a function f, the running time of which is poly(1/e, log G).by Elena Grigorescu.S.M

    List-Decoding Homomorphism Codes with Arbitrary Codomains

    Get PDF
    The codewords of the homomorphism code aHom(G,H) are the affine homomorphisms between two finite groups, G and H, generalizing Hadamard codes. Following the work of Goldreich-Levin (1989), Grigorescu et al. (2006), Dinur et al. (2008), and Guo and Sudan (2014), we further expand the range of groups for which local list-decoding is possible up to mindist, the minimum distance of the code. In particular, for the first time, we do not require either G or H to be solvable. Specifically, we demonstrate a poly(1/epsilon) bound on the list size, i. e., on the number of codewords within distance (mindist-epsilon) from any received word, when G is either abelian or an alternating group, and H is an arbitrary (finite or infinite) group. We conjecture that a similar bound holds for all finite simple groups as domains; the alternating groups serve as the first test case. The abelian vs. arbitrary result permits us to adapt previous techniques to obtain efficient local list-decoding for this case. We also obtain efficient local list-decoding for the permutation representations of alternating groups (the codomain is a symmetric group) under the restriction that the domain G=A_n is paired with codomain H=S_m satisfying m < 2^{n-1}/sqrt{n}. The limitations on the codomain in the latter case arise from severe technical difficulties stemming from the need to solve the homomorphism extension (HomExt) problem in certain cases; these are addressed in a separate paper (Wuu 2018). We introduce an intermediate "semi-algorithmic" model we call Certificate List-Decoding that bypasses the HomExt bottleneck and works in the alternating vs. arbitrary setting. A certificate list-decoder produces partial homomorphisms that uniquely extend to the homomorphisms in the list. A homomorphism extender applied to a list of certificates yields the desired list

    List decoding of noisy Reed-Muller-like codes

    Full text link
    First- and second-order Reed-Muller (RM(1) and RM(2), respectively) codes are two fundamental error-correcting codes which arise in communication as well as in probabilistically-checkable proofs and learning. In this paper, we take the first steps toward extending the quick randomized decoding tools of RM(1) into the realm of quadratic binary and, equivalently, Z_4 codes. Our main algorithmic result is an extension of the RM(1) techniques from Goldreich-Levin and Kushilevitz-Mansour algorithms to the Hankel code, a code between RM(1) and RM(2). That is, given signal s of length N, we find a list that is a superset of all Hankel codewords phi with dot product to s at least (1/sqrt(k)) times the norm of s, in time polynomial in k and log(N). We also give a new and simple formulation of a known Kerdock code as a subcode of the Hankel code. As a corollary, we can list-decode Kerdock, too. Also, we get a quick algorithm for finding a sparse Kerdock approximation. That is, for k small compared with 1/sqrt{N} and for epsilon > 0, we find, in time polynomial in (k log(N)/epsilon), a k-Kerdock-term approximation s~ to s with Euclidean error at most the factor (1+epsilon+O(k^2/sqrt{N})) times that of the best such approximation

    Low-degree tests at large distances

    Full text link
    We define tests of boolean functions which distinguish between linear (or quadratic) polynomials, and functions which are very far, in an appropriate sense, from these polynomials. The tests have optimal or nearly optimal trade-offs between soundness and the number of queries. In particular, we show that functions with small Gowers uniformity norms behave ``randomly'' with respect to hypergraph linearity tests. A central step in our analysis of quadraticity tests is the proof of an inverse theorem for the third Gowers uniformity norm of boolean functions. The last result has also a coding theory application. It is possible to estimate efficiently the distance from the second-order Reed-Muller code on inputs lying far beyond its list-decoding radius
    • …
    corecore