4,401 research outputs found

    Lagrangian Relaxation for MAP Estimation in Graphical Models

    Full text link
    We develop a general framework for MAP estimation in discrete and Gaussian graphical models using Lagrangian relaxation techniques. The key idea is to reformulate an intractable estimation problem as one defined on a more tractable graph, but subject to additional constraints. Relaxing these constraints gives a tractable dual problem, one defined by a thin graph, which is then optimized by an iterative procedure. When this iterative optimization leads to a consistent estimate, one which also satisfies the constraints, then it corresponds to an optimal MAP estimate of the original model. Otherwise there is a ``duality gap'', and we obtain a bound on the optimal solution. Thus, our approach combines convex optimization with dynamic programming techniques applicable for thin graphs. The popular tree-reweighted max-product (TRMP) method may be seen as solving a particular class of such relaxations, where the intractable graph is relaxed to a set of spanning trees. We also consider relaxations to a set of small induced subgraphs, thin subgraphs (e.g. loops), and a connected tree obtained by ``unwinding'' cycles. In addition, we propose a new class of multiscale relaxations that introduce ``summary'' variables. The potential benefits of such generalizations include: reducing or eliminating the ``duality gap'' in hard problems, reducing the number or Lagrange multipliers in the dual problem, and accelerating convergence of the iterative optimization procedure.Comment: 10 pages, presented at 45th Allerton conference on communication, control and computing, to appear in proceeding

    Generalized sequential tree-reweighted message passing

    Full text link
    This paper addresses the problem of approximate MAP-MRF inference in general graphical models. Following [36], we consider a family of linear programming relaxations of the problem where each relaxation is specified by a set of nested pairs of factors for which the marginalization constraint needs to be enforced. We develop a generalization of the TRW-S algorithm [9] for this problem, where we use a decomposition into junction chains, monotonic w.r.t. some ordering on the nodes. This generalizes the monotonic chains in [9] in a natural way. We also show how to deal with nested factors in an efficient way. Experiments show an improvement over min-sum diffusion, MPLP and subgradient ascent algorithms on a number of computer vision and natural language processing problems

    Cluster Variation Method in Statistical Physics and Probabilistic Graphical Models

    Full text link
    The cluster variation method (CVM) is a hierarchy of approximate variational techniques for discrete (Ising--like) models in equilibrium statistical mechanics, improving on the mean--field approximation and the Bethe--Peierls approximation, which can be regarded as the lowest level of the CVM. In recent years it has been applied both in statistical physics and to inference and optimization problems formulated in terms of probabilistic graphical models. The foundations of the CVM are briefly reviewed, and the relations with similar techniques are discussed. The main properties of the method are considered, with emphasis on its exactness for particular models and on its asymptotic properties. The problem of the minimization of the variational free energy, which arises in the CVM, is also addressed, and recent results about both provably convergent and message-passing algorithms are discussed.Comment: 36 pages, 17 figure
    • …
    corecore