22,803 research outputs found

    Credal Networks under Epistemic Irrelevance

    Get PDF
    A credal network under epistemic irrelevance is a generalised type of Bayesian network that relaxes its two main building blocks. On the one hand, the local probabilities are allowed to be partially specified. On the other hand, the assessments of independence do not have to hold exactly. Conceptually, these two features turn credal networks under epistemic irrelevance into a powerful alternative to Bayesian networks, offering a more flexible approach to graph-based multivariate uncertainty modelling. However, in practice, they have long been perceived as very hard to work with, both theoretically and computationally. The aim of this paper is to demonstrate that this perception is no longer justified. We provide a general introduction to credal networks under epistemic irrelevance, give an overview of the state of the art, and present several new theoretical results. Most importantly, we explain how these results can be combined to allow for the design of recursive inference methods. We provide numerous concrete examples of how this can be achieved, and use these to demonstrate that computing with credal networks under epistemic irrelevance is most definitely feasible, and in some cases even highly efficient. We also discuss several philosophical aspects, including the lack of symmetry, how to deal with probability zero, the interpretation of lower expectations, the axiomatic status of graphoid properties, and the difference between updating and conditioning

    Conditional probability estimation

    Get PDF
    This paper studies in particular an aspect of the estimation of conditional probability distributions by maximum likelihood that seems to have been overlooked in the literature on Bayesian networks: The information conveyed by the conditioning event should be included in the likelihood function as well

    Learning Bayesian Networks with the bnlearn R Package

    Get PDF
    bnlearn is an R package which includes several algorithms for learning the structure of Bayesian networks with either discrete or continuous variables. Both constraint-based and score-based algorithms are implemented, and can use the functionality provided by the snow package to improve their performance via parallel computing. Several network scores and conditional independence algorithms are available for both the learning algorithms and independent use. Advanced plotting options are provided by the Rgraphviz package.Comment: 22 pages, 4 picture

    Bayesian Network Structure Learning with Permutation Tests

    Full text link
    In literature there are several studies on the performance of Bayesian network structure learning algorithms. The focus of these studies is almost always the heuristics the learning algorithms are based on, i.e. the maximisation algorithms (in score-based algorithms) or the techniques for learning the dependencies of each variable (in constraint-based algorithms). In this paper we investigate how the use of permutation tests instead of parametric ones affects the performance of Bayesian network structure learning from discrete data. Shrinkage tests are also covered to provide a broad overview of the techniques developed in current literature.Comment: 13 pages, 4 figures. Presented at the Conference 'Statistics for Complex Problems', Padova, June 15, 201
    • …
    corecore