37,273 research outputs found

    Overlapping Community Detection using Local Seed Expansion

    Get PDF
    Communities are usually groups of vertices which have higher probability of being connected to each other than to members of other groups. Community detection in complex networks is one of the most popular topics in social network analysis. While in real networks, a person can be overlapped in multiple communities such as family, friends and colleagues, so overlapping community detection attracts   more and more attention.  Detecting communities from the local structural information of a small number of seed nodes is the successful methods for overlapping community detection. In this work, we propose an overlapping community detection algorithm using local seed expansion approach. Our local seed expansion algorithm selects the nodes with the highest degree as seed nodes and then locally expand these seeds with their entire vertex neighborhood into overlapping communities using Personalized PageRank algorithm. We use F1_score( node  level detection )  and NMI( community level detection ) measures to assess the performances of the proposed algorithm by comparing the proposed algorithm’s detected communities with ground_truth communities on many real_world networks. Experimental results show that our algorithm outperforms over other overlapping community detection methods in terms of accuracy and quality of overlapped communities

    Seeding for pervasively overlapping communities

    Full text link
    In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms that are designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes increasingly important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.Comment: 8 Page
    corecore