46 research outputs found

    A framework for hull form reverse engineering and geometry integration into numerical simulations

    Get PDF
    The thesis presents a ship hull form specific reverse engineering and CAD integration framework. The reverse engineering part proposes three alternative suitable reconstruction approaches namely curves network, direct surface fitting, and triangulated surface reconstruction. The CAD integration part includes surface healing, region identification, and domain preparation strategies which used to adapt the CAD model to downstream application requirements. In general, the developed framework bridges a point cloud and a CAD model obtained from IGES and STL file into downstream applications

    An Unfitted Discontinuous Galerkin Scheme for Micro-scale Simulations and Numerical Upscaling

    Get PDF
    The aim of this thesis is the development of a new discretization method for solving partial differential equations on complex shaped domains. Many biological, physical, and chemical applications involve processes on such domains and the numerical treatment of such processes is a challenging task. The proposed method offers a higher-order discretization where the mesh is not required to resolve the complex shaped boundary. The method combines the Unfitted Finite Element method with a Discontinuous Galerkin discretization. Trial and test functions are defined on a structured grid and their support is restricted according to the domain boundary. Essential boundary conditions are imposed weakly via the Discontinuous Galerkin formulation. Thus, the mesh is not required to resolve the domain boundary but higher-order ansatz functions can still be used. Hence it is possible to vary the size of the ansatz space independently of the geometry. For an elliptic test problem, stability and convergence properties of the method are analyzed numerically. Even though some assumptions of the underlying Discontinuous Galerkin method regarding the finite element mesh cannot be guaranteed, the method is stable in all tests and converges optimally. The control over the size of the approximation space is especially attractive for applications like numerical upscaling and multi-scale simulations. In this thesis the method is successfully applied to numerical upscaling of a stationary flow problem and to a time-dependent transport problem, where the complex domains used are artificially generated as well as experimentally measured structures, obtained from micro X-ray CT scans

    Morphology And Mechanics Of Cortical Folding Associated With Auditory Deprivation

    Get PDF
    Hearing loss is increasingly becoming a common disabling condition that affects the global population. Functional and structural changes occur in the developing auditory cortex after the onset of auditory deprivation. This study aims at measuring and modeling these changes, which can help understand the pathology of hearing loss and support research on treatment. Specifically, it describes a pipeline of automatically extracting inner and outer cortical surfaces from MRI images and measuring morphological metrics. Then, a two-component finite element mechanical model mimicking gray matter and white matter is used to investigate the causes of measured structural differences between cats with normal hearing and hearing loss. Mechanical parameters, such as shear and bulk modulus, are varied with a view to studying their influence on cortical folding patterns. Compared to hearing cats, cats with hearing loss have decreased cortical curvature and folding index, and increased thickness. By varying the shear modulus and bulk modulus of the gray and white matter at different locations, the mechanical model reveals distinct stable folding patterns. Specific combinations of parameters and locations lead to changes in curvature, folding index, and thickness. The methods used in this study can also be extended to examine cortical morphological characteristics associated with other abnormalities in the developing brain

    Assisting digital volume correlation with mechanical image-based modeling: application to the measurement of kinematic fields at the architecture scale in cellular materials

    Get PDF
    La mesure de champs de déplacement et de déformation aux petites échelles dans des microstructures complexes représente encore un défi majeur dans le monde de la mécanique expérimentale. Ceci est en partie dû aux acquisitions d'images et à la pauvreté de la texture à ces échelles. C'est notamment le cas pour les matériaux cellulaires lorsqu'ils sont imagés avec des micro-tomographes conventionnels et qu'ils peuvent être sujets à des mécanismes de déformation complexes. Comme la validation de modèles numériques et l'identification des propriétés mécaniques de matériaux se base sur des mesures précises de déplacements et de déformations, la conception et l'implémentation d'algorithmes robustes et fiables de corrélation d'images semble nécessaire. Lorsque l'on s'intéresse à l'utilisation de la corrélation d'images volumiques (DVC) pour les matériaux cellulaires, on est confronté à un paradoxe: l'absence de texture à l'échelle du constituant conduit à considérer l'architecture comme marqueur pour la corrélation. Ceci conduit à l'échec des techniques ordinaires de DVC à mesurer des cinématiques aux échelles subcellulaires en lien avec des comportements mécaniques locaux complexes tels que la flexion ou le flambement de travées. L'objectif de cette thèse est la conception d'une technique de DVC pour la mesure de champs de déplacement dans des matériaux cellulaires à l'échelle de leurs architectures. Cette technique assiste la corrélation d'images par une régularisation élastique faible en utilisant un modèle mécanique généré automatiquement et basé sur les images. La méthode suggérée introduit une séparation d'échelles au dessus desquelles la DVC est dominante et en dessous desquelles elle est assistée par le modèle mécanique basé sur l'image. Une première étude numérique consistant à comparer différentes techniques de construction de modèles mécaniques basés sur les images est conduite. L'accent est mis sur deux méthodes de calcul particulières: la méthode des éléments finis (FEM) et la méthode des cellules finies (FCM) qui consiste à immerger la géométrie complexe dans une grille régulière de haut ordre sans utiliser de mailleurs. Si la FCM évite une première phase délicate de discrétisation, plusieurs paramètres restent néanmoins délicats à fixer. Dans ce travail, ces paramètres sont ajustés afin d'obtenir (a) la meilleure précision (bornée par les erreurs de pixellisation) tout en (b) assurant une complexité minimale. Pour l'aspect mesure par corrélation d'images régularisée, plusieurs expérimentations virtuelles à partir de différentes simulations numériques (en élasticité, en plasticité et en non-linéarité géométrique) sont d'abord réalisées afin d'analyser l'influence des paramètres de régularisation introduits. Les erreurs de mesures peuvent dans ce cas être quantifiées à l'aide des solutions de référence éléments finis. La capacité de la méthode à mesurer des cinématiques complexes en absence de texture est démontrée pour des régimes non-linéaires tels que le flambement. Finalement, le travail proposé est généralisé à la corrélation volumique des différents états de déformation du matériau et à la construction automatique de la micro-architecture cellulaire en utilisant soit une grille B-spline d'ordre arbitraire (FCM) soit un maillage éléments finis (FEM). Une mise en évidence expérimentale de l'efficacité et de la justesse de l'approche proposée est effectuée à travers de la mesure de cinématiques complexes dans une mousse polyuréthane sollicitée en compression lors d'un essai in situ.Measuring displacement and strain fields at low observable scales in complex microstructures still remains a challenge in experimental mechanics often because of the combination of low definition images with poor texture at this scale. The problem is particularly acute in the case of cellular materials, when imaged by conventional micro-tomographs, for which complex highly non-linear local phenomena can occur. As the validation of numerical models and the identification of mechanical properties of materials must rely on accurate measurements of displacement and strain fields, the design and implementation of robust and faithful image correlation algorithms must be conducted. With cellular materials, the use of digital volume correlation (DVC) faces a paradox: in the absence of markings of exploitable texture on/or in the struts or cell walls, the available speckle will be formed by the material architecture itself. This leads to the inability of classical DVC codes to measure kinematics at the cellular and a fortiori sub-cellular scales, precisely because the interpolation basis of the displacement field cannot account for the complexity of the underlying kinematics, especially when bending or buckling of beams or walls occurs. The objective of the thesis is to develop a DVC technique for the measurement of displacement fields in cellular materials at the scale of their architecture. The proposed solution consists in assisting DVC by a weak elastic regularization using an automatic image-based mechanical model. The proposed method introduces a separation of scales above which DVC is dominant and below which it is assisted by image-based modeling. First, a numerical investigation and comparison of different techniques for building automatically a geometric and mechanical model from tomographic images is conducted. Two particular methods are considered: the finite element method (FEM) and the finite-cell method (FCM). The FCM is a fictitious domain method that consists in immersing the complex geometry in a high order structured grid and does not require meshing. In this context, various discretization parameters appear delicate to choose. In this work, these parameters are adjusted to obtain (a) the best possible accuracy (bounded by pixelation errors) while (b) ensuring minimal complexity. Concerning the ability of the mechanical image-based models to regularize DIC, several virtual experimentations are performed in two-dimensions in order to finely analyze the influence of the introduced regularization lengths for different input mechanical behaviors (elastic, elasto-plastic and geometrically non-linear) and in comparison with ground truth. We show that the method can estimate complex local displacement and strain fields with speckle-free low definition images, even in non-linear regimes such as local buckling. Finally a three-dimensional generalization is performed through the development of a DVC framework. It takes as an input the reconstructed volumes at the different deformation states of the material and constructs automatically the cellular micro-architeture geometry. It considers either an immersed structured B-spline grid of arbitrary order or a finite-element mesh. An experimental evidence is performed by measuring the complex kinematics of a polyurethane foam under compression during an in situ test

    New Models for High-Quality Surface Reconstruction and Rendering

    Get PDF
    The efficient reconstruction and artifact-free visualization of surfaces from measured real-world data is an important issue in various applications, such as medical and scientific visualization, quality control, and the media-related industry. The main contribution of this thesis is the development of the first efficient GPU-based reconstruction and visualization methods using trivariate splines, i.e., splines defined on tetrahedral partitions. Our methods show that these models are very well-suited for real-time reconstruction and high-quality visualizations of surfaces from volume data. We create a new quasi-interpolating operator which for the first time solves the problem of finding a globally C1-smooth quadratic spline approximating data and where no tetrahedra need to be further subdivided. In addition, we devise a new projection method for point sets arising from a sufficiently dense sampling of objects. Compared with existing approaches, high-quality surface triangulations can be generated with guaranteed numerical stability. Keywords. Piecewise polynomials; trivariate splines; quasi-interpolation; volume data; GPU ray casting; surface reconstruction; point set surface

    New Models for High-Quality Surface Reconstruction and Rendering

    Get PDF
    The efficient reconstruction and artifact-free visualization of surfaces from measured real-world data is an important issue in various applications, such as medical and scientific visualization, quality control, and the media-related industry. The main contribution of this thesis is the development of the first efficient GPU-based reconstruction and visualization methods using trivariate splines, i.e., splines defined on tetrahedral partitions. Our methods show that these models are very well-suited for real-time reconstruction and high-quality visualizations of surfaces from volume data. We create a new quasi-interpolating operator which for the first time solves the problem of finding a globally C1-smooth quadratic spline approximating data and where no tetrahedra need to be further subdivided. In addition, we devise a new projection method for point sets arising from a sufficiently dense sampling of objects. Compared with existing approaches, high-quality surface triangulations can be generated with guaranteed numerical stability. Keywords. Piecewise polynomials; trivariate splines; quasi-interpolation; volume data; GPU ray casting; surface reconstruction; point set surface
    corecore