16,857 research outputs found

    Local Algorithms for Sparse Spanning Graphs

    Get PDF
    We initiate the study of the problem of designing sublinear-time (local) algorithms that, given an edge (u,v) in a connected graph G=(V,E), decide whether (u,v) belongs to a sparse spanning graph G\u27 = (V,E\u27) of G. Namely, G\u27 should be connected and |E\u27| should be upper bounded by (1+epsilon)|V| for a given parameter epsilon > 0. To this end the algorithms may query the incidence relation of the graph G, and we seek algorithms whose query complexity and running time (per given edge (u,v)) is as small as possible. Such an algorithm may be randomized but (for a fixed choice of its random coins) its decision on different edges in the graph should be consistent with the same spanning graph G\u27 and independent of the order of queries. We first show that for general (bounded-degree) graphs, the query complexity of any such algorithm must be Omega(sqrt{|V|}). This lower bound holds for graphs that have high expansion. We then turn to design and analyze algorithms both for graphs with high expansion (obtaining a result that roughly matches the lower bound) and for graphs that are (strongly) non-expanding (obtaining results in which the complexity does not depend on |V|). The complexity of the problem for graphs that do not fall into these two categories is left as an open question

    A Local Algorithm for Constructing Spanners in Minor-Free Graphs

    Get PDF
    Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. We consider this problem in the setting of local algorithms: one wants to quickly determine whether a given edge ee is in a specific spanning tree, without computing the whole spanning tree, but rather by inspecting the local neighborhood of ee. The challenge is to maintain consistency. That is, to answer queries about different edges according to the same spanning tree. Since it is known that this problem cannot be solved without essentially viewing all the graph, we consider the relaxed version of finding a spanning subgraph with (1+ϵ)n(1+\epsilon)n edges (where nn is the number of vertices and ϵ\epsilon is a given sparsity parameter). It is known that this relaxed problem requires inspecting Ω(n)\Omega(\sqrt{n}) edges in general graphs, which motivates the study of natural restricted families of graphs. One such family is the family of graphs with an excluded minor. For this family there is an algorithm that achieves constant success probability, and inspects (d/ϵ)poly(h)log(1/ϵ)(d/\epsilon)^{poly(h)\log(1/\epsilon)} edges (for each edge it is queried on), where dd is the maximum degree in the graph and hh is the size of the excluded minor. The distances between pairs of vertices in the spanning subgraph GG' are at most a factor of poly(d,1/ϵ,h)poly(d, 1/\epsilon, h) larger than in GG. In this work, we show that for an input graph that is HH-minor free for any HH of size hh, this task can be performed by inspecting only poly(d,1/ϵ,h)poly(d, 1/\epsilon, h) edges. The distances between pairs of vertices in the spanning subgraph GG' are at most a factor of O~(hlog(d)/ϵ)\tilde{O}(h\log(d)/\epsilon) larger than in GG. Furthermore, the error probability of the new algorithm is significantly improved to Θ(1/n)\Theta(1/n). This algorithm can also be easily adapted to yield an efficient algorithm for the distributed setting

    A Local Algorithm for the Sparse Spanning Graph Problem

    Get PDF
    Constructing a sparse spanning subgraph is a fundamental primitive in graph theory. In this paper, we study this problem in the Centralized Local model, where the goal is to decide whether an edge is part of the spanning subgraph by examining only a small part of the input; yet, answers must be globally consistent and independent of prior queries. Unfortunately, maximally sparse spanning subgraphs, i.e., spanning trees, cannot be constructed efficiently in this model. Therefore, we settle for a spanning subgraph containing at most (1+ε)n(1+\varepsilon)n edges (where nn is the number of vertices and ε\varepsilon is a given approximation/sparsity parameter). We achieve query complexity of O~(poly(Δ/ε)n2/3)\tilde{O}(poly(\Delta/\varepsilon)n^{2/3}), (O~\tilde{O}-notation hides polylogarithmic factors in nn). where Δ\Delta is the maximum degree of the input graph. Our algorithm is the first to do so on arbitrary bounded degree graphs. Moreover, we achieve the additional property that our algorithm outputs a spanner, i.e., distances are approximately preserved. With high probability, for each deleted edge there is a path of O(poly(Δ/ε)log2n)O(poly(\Delta/\varepsilon)\log^2 n) hops in the output that connects its endpoints

    Streaming Complexity of Spanning Tree Computation

    Get PDF
    The semi-streaming model is a variant of the streaming model frequently used for the computation of graph problems. It allows the edges of an n-node input graph to be read sequentially in p passes using Õ(n) space. If the list of edges includes deletions, then the model is called the turnstile model; otherwise it is called the insertion-only model. In both models, some graph problems, such as spanning trees, k-connectivity, densest subgraph, degeneracy, cut-sparsifier, and (Δ+1)-coloring, can be exactly solved or (1+ε)-approximated in a single pass; while other graph problems, such as triangle detection and unweighted all-pairs shortest paths, are known to require Ω̃(n) passes to compute. For many fundamental graph problems, the tractability in these models is open. In this paper, we study the tractability of computing some standard spanning trees, including BFS, DFS, and maximum-leaf spanning trees. Our results, in both the insertion-only and the turnstile models, are as follows. Maximum-Leaf Spanning Trees: This problem is known to be APX-complete with inapproximability constant ρ ∈ [245/244, 2). By constructing an ε-MLST sparsifier, we show that for every constant ε > 0, MLST can be approximated in a single pass to within a factor of 1+ε w.h.p. (albeit in super-polynomial time for ε ≤ ρ-1 assuming P ≠ NP) and can be approximated in polynomial time in a single pass to within a factor of ρ_n+ε w.h.p., where ρ_n is the supremum constant that MLST cannot be approximated to within using polynomial time and Õ(n) space. In the insertion-only model, these algorithms can be deterministic. BFS Trees: It is known that BFS trees require ω(1) passes to compute, but the naïve approach needs O(n) passes. We devise a new randomized algorithm that reduces the pass complexity to O(√n), and it offers a smooth tradeoff between pass complexity and space usage. This gives a polynomial separation between single-source and all-pairs shortest paths for unweighted graphs. DFS Trees: It is unknown whether DFS trees require more than one pass. The current best algorithm by Khan and Mehta [STACS 2019] takes Õ(h) passes, where h is the height of computed DFS trees. Note that h can be as large as Ω(m/n) for n-node m-edge graphs. Our contribution is twofold. First, we provide a simple alternative proof of this result, via a new connection to sparse certificates for k-node-connectivity. Second, we present a randomized algorithm that reduces the pass complexity to O(√n), and it also offers a smooth tradeoff between pass complexity and space usage.ISSN:1868-896
    corecore