3,579 research outputs found

    Continuum percolation of wireless ad hoc communication networks

    Full text link
    Wireless multi-hop ad hoc communication networks represent an infrastructure-less and self-organized generalization of todays wireless cellular networks. Connectivity within such a network is an important issue. Continuum percolation and technology-driven mutations thereof allow to address this issue in the static limit and to construct a simple distributed protocol, guaranteeing strong connectivity almost surely and independently of various typical uncorrelated and correlated random spatial patterns of participating ad hoc nodes.Comment: 30 pages, to be published in Physica

    The Commensal Real-time ASKAP Fast Transients (CRAFT) survey

    Get PDF
    We are developing a purely commensal survey experiment for fast (<5s) transient radio sources. Short-timescale transients are associated with the most energetic and brightest single events in the Universe. Our objective is to cover the enormous volume of transients parameter space made available by ASKAP, with an unprecedented combination of sensitivity and field of view. Fast timescale transients open new vistas on the physics of high brightness temperature emission, extreme states of matter and the physics of strong gravitational fields. In addition, the detection of extragalactic objects affords us an entirely new and extremely sensitive probe on the huge reservoir of baryons present in the IGM. We outline here our approach to the considerable challenge involved in detecting fast transients, particularly the development of hardware fast enough to dedisperse and search the ASKAP data stream at or near real-time rates. Through CRAFT, ASKAP will provide the testbed of many of the key technologies and survey modes proposed for high time resolution science with the SKA.Comment: accepted for publication in PAS

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Robust distributed planning strategies for autonomous multi-agent teams

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from department-submitted PDF version of thesis. This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 225-244).The increased use of autonomous robotic agents, such as unmanned aerial vehicles (UAVs) and ground rovers, for complex missions has motivated the development of autonomous task allocation and planning methods that ensure spatial and temporal coordination for teams of cooperating agents. The basic problem can be formulated as a combinatorial optimization (mixed-integer program) involving nonlinear and time-varying system dynamics. For most problems of interest, optimal solution methods are computationally intractable (NP-Hard), and centralized planning approaches, which usually require high bandwidth connections with a ground station (e.g. to transmit received sensor data, and to dispense agent plans), are resource intensive and react slowly to local changes in dynamic environments. Distributed approximate algorithms, where agents plan individually and coordinate with each other locally through consensus protocols, can alleviate many of these issues and have been successfully used to develop real-time conflict-free solutions for heterogeneous networked teams. An important issue associated with autonomous planning is that many of the algorithms rely on underlying system models and parameters which are often subject to uncertainty. This uncertainty can result from many sources including: inaccurate modeling due to simplifications, assumptions, and/or parameter errors; fundamentally nondeterministic processes (e.g. sensor readings, stochastic dynamics); and dynamic local information changes. As discrepancies between the planner models and the actual system dynamics increase, mission performance typically degrades. The impact of these discrepancies on the overall quality of the plan is usually hard to quantify in advance due to nonlinear effects, coupling between tasks and agents, and interdependencies between system constraints. However, if uncertainty models of planning parameters are available, they can be leveraged to create robust plans that explicitly hedge against the inherent uncertainty given allowable risk thresholds. This thesis presents real-time robust distributed planning strategies that can be used to plan for multi-agent networked teams operating in stochastic and dynamic environments. One class of distributed combinatorial planning algorithms involves using auction algorithms augmented with consensus protocols to allocate tasks amongst a team of agents while resolving conflicting assignments locally between the agents. A particular algorithm in this class is the Consensus-Based Bundle Algorithm (CBBA), a distributed auction protocol that guarantees conflict-free solutions despite inconsistencies in situational awareness across the team. CBBA runs in polynomial time, demonstrating good scalability with increasing numbers of agents and tasks. This thesis builds upon the CBBA framework to address many realistic considerations associated with planning for networked teams, including time-critical mission constraints, limited communication between agents, and stochastic operating environments. A particular focus of this work is a robust extension to CBBA that handles distributed planning in stochastic environments given probabilistic parameter models and different stochastic metrics. The Robust CBBA algorithm proposed in this thesis provides a distributed real-time framework which can leverage different stochastic metrics to hedge against parameter uncertainty. In mission scenarios where low probability of failure is required, a chance-constrained stochastic metric can be used to provide probabilistic guarantees on achievable mission performance given allowable risk thresholds. This thesis proposes a distributed chance-constrained approximation that can be used within the Robust CBBA framework, and derives constraints on individual risk allocations to guarantee equivalence between the centralized chance-constrained optimization and the distributed approximation. Different risk allocation strategies for homogeneous and heterogeneous teams are proposed that approximate the agent and mission score distributions a priori, and results are provided showing improved performance in time-critical mission scenarios given allowable risk thresholds.by Sameera S. Ponda.Ph.D
    corecore