222,818 research outputs found

    Local Algorithms for Block Models with Side Information

    Full text link
    There has been a recent interest in understanding the power of local algorithms for optimization and inference problems on sparse graphs. Gamarnik and Sudan (2014) showed that local algorithms are weaker than global algorithms for finding large independent sets in sparse random regular graphs. Montanari (2015) showed that local algorithms are suboptimal for finding a community with high connectivity in the sparse Erd\H{o}s-R\'enyi random graphs. For the symmetric planted partition problem (also named community detection for the block models) on sparse graphs, a simple observation is that local algorithms cannot have non-trivial performance. In this work we consider the effect of side information on local algorithms for community detection under the binary symmetric stochastic block model. In the block model with side information each of the nn vertices is labeled ++ or −- independently and uniformly at random; each pair of vertices is connected independently with probability a/na/n if both of them have the same label or b/nb/n otherwise. The goal is to estimate the underlying vertex labeling given 1) the graph structure and 2) side information in the form of a vertex labeling positively correlated with the true one. Assuming that the ratio between in and out degree a/ba/b is Θ(1)\Theta(1) and the average degree (a+b)/2=no(1) (a+b) / 2 = n^{o(1)}, we characterize three different regimes under which a local algorithm, namely, belief propagation run on the local neighborhoods, maximizes the expected fraction of vertices labeled correctly. Thus, in contrast to the case of symmetric block models without side information, we show that local algorithms can achieve optimal performance for the block model with side information.Comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract here is shorter than that in the PDF fil

    Fast Distributed Approximation for Max-Cut

    Full text link
    Finding a maximum cut is a fundamental task in many computational settings. Surprisingly, it has been insufficiently studied in the classic distributed settings, where vertices communicate by synchronously sending messages to their neighbors according to the underlying graph, known as the LOCAL\mathcal{LOCAL} or CONGEST\mathcal{CONGEST} models. We amend this by obtaining almost optimal algorithms for Max-Cut on a wide class of graphs in these models. In particular, for any ϵ>0\epsilon > 0, we develop randomized approximation algorithms achieving a ratio of (1−ϵ)(1-\epsilon) to the optimum for Max-Cut on bipartite graphs in the CONGEST\mathcal{CONGEST} model, and on general graphs in the LOCAL\mathcal{LOCAL} model. We further present efficient deterministic algorithms, including a 1/31/3-approximation for Max-Dicut in our models, thus improving the best known (randomized) ratio of 1/41/4. Our algorithms make non-trivial use of the greedy approach of Buchbinder et al. (SIAM Journal on Computing, 2015) for maximizing an unconstrained (non-monotone) submodular function, which may be of independent interest

    Local Algorithms for Sparse Spanning Graphs

    Get PDF
    We initiate the study of the problem of designing sublinear-time (local) algorithms that, given an edge (u,v) in a connected graph G=(V,E), decide whether (u,v) belongs to a sparse spanning graph G\u27 = (V,E\u27) of G. Namely, G\u27 should be connected and |E\u27| should be upper bounded by (1+epsilon)|V| for a given parameter epsilon > 0. To this end the algorithms may query the incidence relation of the graph G, and we seek algorithms whose query complexity and running time (per given edge (u,v)) is as small as possible. Such an algorithm may be randomized but (for a fixed choice of its random coins) its decision on different edges in the graph should be consistent with the same spanning graph G\u27 and independent of the order of queries. We first show that for general (bounded-degree) graphs, the query complexity of any such algorithm must be Omega(sqrt{|V|}). This lower bound holds for graphs that have high expansion. We then turn to design and analyze algorithms both for graphs with high expansion (obtaining a result that roughly matches the lower bound) and for graphs that are (strongly) non-expanding (obtaining results in which the complexity does not depend on |V|). The complexity of the problem for graphs that do not fall into these two categories is left as an open question
    • …
    corecore