208 research outputs found

    The nonconforming virtual element method for eigenvalue problems

    Full text link
    We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allow to treat in the same formulation the two- and three-dimensional case.We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L^2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problem. The proposed schemes provide a correct approximation of the spectrum, in particular we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numerical tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice

    An a posteriori error estimate for the Stokes-Brinkman problem in a polygonal domain

    Get PDF
    summary:We derive a residual based a posteriori error estimate for the Stokes-Brinkman problem on a two-dimensional polygonal domain. We use Taylor-Hood triangular elements. The link to the possible information on the regularity of the problem is discussed

    A posteriori error estimates in the maximum norm for parabolic problems

    Full text link
    We derive a posteriori error estimates in the L∞((0,T];L∞(Ω))L_\infty((0,T];L_\infty(\Omega)) norm for approximations of solutions to linear para bolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estimates for linear parabolic pr oblems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then establish a posteriori bounds for a fully discrete backward Euler finite element approximation. The elliptic reconstruction technique greatly simplifies our development by allow\ ing the straightforward combination of heat kernel estimates with existing elliptic maximum norm error estimators

    The conforming virtual element method for polyharmonic and elastodynamics problems: a review

    Full text link
    In this paper, we review recent results on the conforming virtual element approximation of polyharmonic and elastodynamics problems. The structure and the content of this review is motivated by three paradigmatic examples of applications: classical and anisotropic Cahn-Hilliard equation and phase field models for brittle fracture, that are briefly discussed in the first part of the paper. We present and discuss the mathematical details of the conforming virtual element approximation of linear polyharmonic problems, the classical Cahn-Hilliard equation and linear elastodynamics problems.Comment: 30 pages, 7 figures. arXiv admin note: text overlap with arXiv:1912.0712

    Singular Continuation: Generating Piece-wise Linear Approximations to Pareto Sets via Global Analysis

    Full text link
    We propose a strategy for approximating Pareto optimal sets based on the global analysis framework proposed by Smale (Dynamical systems, New York, 1973, pp. 531-544). The method highlights and exploits the underlying manifold structure of the Pareto sets, approximating Pareto optima by means of simplicial complexes. The method distinguishes the hierarchy between singular set, Pareto critical set and stable Pareto critical set, and can handle the problem of superposition of local Pareto fronts, occurring in the general nonconvex case. Furthermore, a quadratic convergence result in a suitable set-wise sense is proven and tested in a number of numerical examples.Comment: 29 pages, 12 figure
    • …
    corecore