389 research outputs found

    A Generalized Index for Static Voltage Stability of Unbalanced Polyphase Power Systems including Th\'evenin Equivalents and Polynomial Models

    Get PDF
    This paper proposes a Voltage Stability Index (VSI) suitable for unbalanced polyphase power systems. To this end, the grid is represented by a polyphase multiport network model (i.e., compound hybrid parameters), and the aggregate behavior of the devices in each node by Th\'evenin Equivalents (TEs) and Polynomial Models (PMs), respectively. The proposed VSI is a generalization of the known L-index, which is achieved through the use of compound electrical parameters, and the incorporation of TEs and PMs into its formal definition. Notably, the proposed VSI can handle unbalanced polyphase power systems, explicitly accounts for voltage-dependent behavior (represented by PMs), and is computationally inexpensive. These features are valuable for the operation of both transmission and distribution systems. Specifically, the ability to handle the unbalanced polyphase case is of particular value for distribution systems. In this context, it is proven that the compound hybrid parameters required for the calculation of the VSI do exist under practical conditions (i.e., for lossy grids). The proposed VSI is validated against state-of-the-art methods for voltage stability assessment using a benchmark system which is based on the IEEE 34-node feeder

    Airship logistics: The LTA vehicle; a total cargo system

    Get PDF
    Design considerations for logistics are dealt with as they pertain to the large rigid LTA vehicle as either a commercial or military cargo carrier. Pertinent factors discussed are: (1) the basic mission; (2) types of payload; (3) the payload space in regards to configuration and sizing, its capacity, and its loadability. A logistic capability comparison of selected cargo airships versus jumbo jets is also made

    Investigation into the Thermal Behavior and Loadability Characteristic of a YASA-AFPM Generator via an Improved 3-D Coupled Electromagnetic-Thermal Approach

    Get PDF
    The objective of this paper is to investigate the thermal behaviour and loadability characteristic of a yokeless and segmented armature axial-flux permanent-magnet (YASA-AFPM) generator, which uses an improved 3-D coupled electromagnetic-thermal approach. Firstly, a 1-kW YASA-AFPM generator is modelled and analysed by using the proposed approach; the transient and steady-state temperatures of different parts of the generator are determined. To improve the modelling accuracy, the information is exchanged between the thermal and electromagnetic models at each step of the co-simulation, considering both the accurate calculation of losses and the impacts of temperature rise on the temperature-dependent characteristics of the materials. Then, by using the proposed approach, the impact of the slot opening width and the turn number of stator segments on the generator loadability are investigated. After that, the experimental tests are performed. The results reveal the effectiveness and accuracy of the approach to predict the machine loadability and thermal behavior
    corecore