3,844 research outputs found

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    SALR: Secure adaptive load-balancing routing in service oriented wireless sensor networks

    Get PDF
    Congestion control and secure data transfer are the major factors that enhance the efficiency of Service Oriented Wireless Sensor Networks. It is desirable to modify the routing and security schemes adaptively in order to respond effectively to the rapidly changing Network State. Adding more complexities to the routing and security schemes increases the end-to-end delay which is not acceptable in Service Oriented WSNs which are mostly in real time. We propose an algorithm Secure Adaptive Load-Balancing Routing (SALR) protocol, in which the routing decision is taken at every hop considering the unforeseen changes in the network. Multipath selection based on Node Strength is done at every hop to decide the most secure and least congested route. The system predicts the best route rather than running the congestion detection and security schemes repeatedly. Simulation results show that security and latency performance is better than reported protocols

    Optimized Load Centroid and Rabin Onion Secured Routing in Wireless Sensor Network for IoT

    Get PDF
    Advances in wireless communication have geared up extensive insights wherein the sensors can themselves communicate with other sensors that form significant parts of the Internet of Things (IoT). However, the large-scale acceptance of WSN for IoT is still surfacing threats and controversies that apprehend the security aspects. There are a lot of attacks that can manipulate the routein WSN for IoT. In this work, an Optimized Load Centroid and Rabin Onion Routing (OLC-ROR) method are designed to improve the throughput rate with minimum routing overhead and latency. The proposed method is based on a Centroid and Rabin Signature, a Digital Signature technique. First, the optimal route is identified by considering both the load and residual energy using Load Centroid function. Then onion routing is used for selecting secured route amongst the optimality. Besides, the node genuineness is checked by applying the Rabin Signature

    Survey on Various Aspects of Clustering in Wireless Sensor Networks Employing Classical, Optimization, and Machine Learning Techniques

    Get PDF
    A wide range of academic scholars, engineers, scientific and technology communities are interested in energy utilization of Wireless Sensor Networks (WSNs). Their extensive research is going on in areas like scalability, coverage, energy efficiency, data communication, connection, load balancing, security, reliability and network lifespan. Individual researchers are searching for affordable methods to enhance the solutions to existing problems that show unique techniques, protocols, concepts, and algorithms in the wanted domain. Review studies typically offer complete, simple access or a solution to these problems. Taking into account this motivating factor and the effect of clustering on the decline of energy, this article focuses on clustering techniques using various wireless sensor networks aspects. The important contribution of this paper is to give a succinct overview of clustering
    corecore