67,048 research outputs found

    Markovian Workload Characterization for QoS Prediction in the Cloud.

    No full text
    Resource allocation in the cloud is usually driven by performance predictions, such as estimates of the future incoming load to the servers or of the quality-of-service (QoS) offered by applications to end users. In this context, characterizing web workload fluctuations in an accurate way is fundamental to understand how to provision cloud resources under time-varying traffic intensities. In this paper, we investigate the Markovian Arrival Processes (MAP) and the related MAP/MAP/1 queueing model as a tool for performance prediction of servers deployed in the cloud. MAPs are a special class of Markov models used as a compact description of the time-varying characteristics of workloads. In addition, MAPs can fit heavy-tail distributions, that are common in HTTP traffic, and can be easily integrated within analytical queueing models to efficiently predict system performance without simulating. By comparison with trace-driven simulation, we observe that existing techniques for MAP parameterization from HTTP log files often lead to inaccurate performance predictions. We then define a maximum likelihood method for fitting MAP parameters based on data commonly available in Apache log files, and a new technique to cope with batch arrivals, which are notoriously difficult to model accurately. Numerical experiments demonstrate the accuracy of our approach for performance prediction of web systems. © 2011 IEEE

    Computing server power modeling in a data center: survey,taxonomy and performance evaluation

    Full text link
    Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers, leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment. Dynamic power management in a data center environment requires the cognizance of the correlation between the system and hardware level performance counters and the power consumption. Power consumption modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on resource utilization. Several works in power modeling are proposed and used in the literature. However, these power models have been evaluated using different benchmarking applications, power measurement techniques and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24 software-based power models using a unified environment, benchmarking applications, power measurement technique and error formula, with the aim of achieving an objective comparison. We use different servers architectures to assess the impact of heterogeneity on the models' comparison. The performance analysis of these models is elaborated in the paper

    Why (and How) Networks Should Run Themselves

    Full text link
    The proliferation of networked devices, systems, and applications that we depend on every day makes managing networks more important than ever. The increasing security, availability, and performance demands of these applications suggest that these increasingly difficult network management problems be solved in real time, across a complex web of interacting protocols and systems. Alas, just as the importance of network management has increased, the network has grown so complex that it is seemingly unmanageable. In this new era, network management requires a fundamentally new approach. Instead of optimizations based on closed-form analysis of individual protocols, network operators need data-driven, machine-learning-based models of end-to-end and application performance based on high-level policy goals and a holistic view of the underlying components. Instead of anomaly detection algorithms that operate on offline analysis of network traces, operators need classification and detection algorithms that can make real-time, closed-loop decisions. Networks should learn to drive themselves. This paper explores this concept, discussing how we might attain this ambitious goal by more closely coupling measurement with real-time control and by relying on learning for inference and prediction about a networked application or system, as opposed to closed-form analysis of individual protocols

    Bayesian inference for queueing networks and modeling of internet services

    Get PDF
    Modern Internet services, such as those at Google, Yahoo!, and Amazon, handle billions of requests per day on clusters of thousands of computers. Because these services operate under strict performance requirements, a statistical understanding of their performance is of great practical interest. Such services are modeled by networks of queues, where each queue models one of the computers in the system. A key challenge is that the data are incomplete, because recording detailed information about every request to a heavily used system can require unacceptable overhead. In this paper we develop a Bayesian perspective on queueing models in which the arrival and departure times that are not observed are treated as latent variables. Underlying this viewpoint is the observation that a queueing model defines a deterministic transformation between the data and a set of independent variables called the service times. With this viewpoint in hand, we sample from the posterior distribution over missing data and model parameters using Markov chain Monte Carlo. We evaluate our framework on data from a benchmark Web application. We also present a simple technique for selection among nested queueing models. We are unaware of any previous work that considers inference in networks of queues in the presence of missing data.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS392 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore