763 research outputs found

    Biofeedback for training balance and mobility tasks in older populations: a systematic review

    Get PDF
    <p>Abstract</p> <p>Context</p> <p>An effective application of biofeedback for interventions in older adults with balance and mobility disorders may be compromised due to co-morbidity.</p> <p>Objective</p> <p>To evaluate the feasibility and the effectiveness of biofeedback-based training of balance and/or mobility in older adults.</p> <p>Data Sources</p> <p>PubMed (1950-2009), EMBASE (1988-2009), Web of Science (1945-2009), the Cochrane Controlled Trials Register (1960-2009), CINAHL (1982-2009) and PsycINFO (1840-2009). The search strategy was composed of terms referring to biofeedback, balance or mobility, and older adults. Additional studies were identified by scanning reference lists.</p> <p>Study Selection</p> <p>For evaluating effectiveness, 2 reviewers independently screened papers and included controlled studies in older adults (i.e. mean age equal to or greater than 60 years) if they applied biofeedback during repeated practice sessions, and if they used at least one objective outcome measure of a balance or mobility task.</p> <p>Data Extraction</p> <p>Rating of study quality, with use of the Physiotherapy Evidence Database rating scale (PEDro scale), was performed independently by the 2 reviewers. Indications for (non)effectiveness were identified if 2 or more similar studies reported a (non)significant effect for the same type of outcome. Effect sizes were calculated.</p> <p>Results and Conclusions</p> <p>Although most available studies did not systematically evaluate feasibility aspects, reports of high participation rates, low drop-out rates, absence of adverse events and positive training experiences suggest that biofeedback methods can be applied in older adults. Effectiveness was evaluated based on 21 studies, mostly of moderate quality. An indication for effectiveness of visual feedback-based training of balance in (frail) older adults was identified for postural sway, weight-shifting and reaction time in standing, and for the Berg Balance Scale. Indications for added effectiveness of applying biofeedback during training of balance, gait, or sit-to-stand transfers in older patients post-stroke were identified for training-specific aspects. The same applies for auditory feedback-based training of gait in older patients with lower-limb surgery.</p> <p>Implications</p> <p>Further appropriate studies are needed in different populations of older adults to be able to make definitive statements regarding the (long-term) added effectiveness, particularly on measures of functioning.</p

    Peak Trailing Limb Angle and Propulsion Symmetry in Individuals with Below Knee Amputation

    Get PDF
    Background: Individuals with lower extremity amputation often present with kinematic and kinetic gait asymmetries and often have difficulty achieving symmetrical walking using their prescribed prosthesis. To understand the impact of limb loss on gait measures, studies often compare individuals with lower limb amputation to healthy control participants or compare the amputated limb to the uninvolved limb while completing a specified task like steady state walking. Commonly implemented treatments for individuals with lower limb amputation are based upon the assumption that equal use of both legs (symmetry) while completing bipedal tasks (e.g., walking) would be beneficial, matching the behavior seen in healthy control individuals. Underlying kinematic or kinetic symmetry, as well as a potential relationship of the two biomechanical gait variables in individuals with below knee amputation have not been thoroughly evaluated during steady state treadmill walking. Methods: We explored potential underlying (a)symmetries in peak trailing limb angle (kinematic) and peak anterior ground reaction force (kinetic) in individuals with below knee amputation walking at self-selected walking speed on a treadmill without upper extremity support. We then implemented real-time visual feedback to alter symmetry and examine the potential relationship between peak trailing limb angle and peak anterior ground reaction force. Later, we recruited and tested healthy control individuals with and without a solid ankle foot orthosis (SAFO) walking at their self-selected walking speed on a treadmill and exposed them to a similar visual feedback program to alter their baseline (a)symmetry. Population: We enrolled eleven of the planned twenty-four individuals with unilateral below knee amputation and fourteen healthy control participants without any lower extremity pathology or gait abnormality. Results: We found that individuals with below knee amputation do have peak trailing limb and anterior ground reaction force asymmetries and unencumbered healthy control individuals demonstrate symmetry of the same outcome measures while walking on a treadmill at self-selected walking speed. The use of real time visual feedback yielded statistically significant differences in peak trailing limb angle in healthy control participants without a solid ankle foot orthosis (p=0.04), peak and impulse anterior ground reaction forces when wearing a solid ankle foot orthosis (p=0.04). Statistically significant correlation between peak trailing limb angle and peak anterior ground reaction force were found in individuals with below knee amputation at baseline (p=0.0004), with real time visual feedback for peak trailing limb angle (p\u3c0.0001), and peak anterior ground reaction force (p=0.0002). Conclusions: Real time visual feedback is one intervention used to alter walking symmetry. Our results do not demonstrate an overwhelming response to real time visual feedback by individuals with below knee amputation or their healthy control counterparts and should be interpreted with caution. This work does provide meaningful information for further studies and interventions to alter symmetry during steady state walking and begins to explore the potential relationship between peak trailing limb angel and peak anterior ground reaction force production during self-selected treadmill walking in individuals with below knee amputation as well as otherwise healthy control individuals

    Action Observation Plus Sonification. A Novel Therapeutic Protocol for Parkinson\u2019s Patient with Freezing of Gait

    Get PDF
    Freezing of gait (FoG) is a disabling symptom associated to falls, with little or no responsiveness to pharmacological treatment. Current protocols used for rehabilitation are based on the use of external sensory cues. However, cued strategies might generate an important dependence on the environment. Teaching motor strategies without cues (i.e. action observation - AO - plus sonification) could represent an alternative/innovative approach to rehabilitation that matters most on appropriate allocation of attention and lightening cognitive load. We aimed to test the effects of a novel experimental protocol to treat patients with Parkinson disease (PD) and freezing of gait, using functional, and clinical scales. The experimental protocol was based on action observation plus sonification. 12 patients were treated with 8 motor gestures. They watched 8 videos showing an actor performing the same 8 gestures, and then tried to repeat each gesture. Each video was composed by images and sounds of the gestures. By means of the sonification technique, the sounds of gestures were obtained by transforming kinematic data (velocity) recorded during gesture execution, into pitch variations. The same 8 motor gestures were also used in a second group of 10 patients; which were treated with a standard protocol based on a common sensory stimulation method. All patients were tested with functional and clinical scales before, after, at 1 month, and 3 months after the treatment. Data showed that the experimental protocol have positive effects on functional and clinical tests. In comparison with the baseline evaluations, significant performance improvements were seen in the N-FOG questionnaire, and the UPDRS (part 3 and 2). Importantly, all these improvements were consistently observed at the end, 1 month, and 3 months after treatment. No improvements effects were found in the group of patients treated with the standard protocol. These data suggest that a multisensory approach based on action observation plus sonification, with the two stimuli semantically related, could help PD patients with FoG to re-learn gait movements, to reduce freezing episodes, and that these effects could be prolonged over time

    Visual determinants of postural control and perception during physical and visual motion

    Get PDF
    The control of balance and posture is a critical task of daily life to limit the risk of falls and potential injury. In order to be successful in the control of balance the central nervous system utilizes sensory feedback from the visual, proprioceptive/somtatosensory and vestibular systems. It is through the detection, processing and perception of these sensory cues that allow us to form an accurate representation of postural events and respond accordingly. In this dissertation I investigate how we perceive postural events, how this perception can change with altered visual cues introduced through virtual reality and how virtual visual motion with differing context can alter postural responses. This dissertation aims to determine the following: (1) to determine if methodological changes effect an individuals perception of postural instability onset, (2) to investigate if visual information can alter our perception of instability onset, (3) to investigate if visual motion with differing visual characteristics can alter postural responses. Results indicate that the methodology utilized during a temporal order judgement task has an effect on the perception of postural instability onset. Additionally, it was observed that virtual visual height impacts the precision of perceptual responses to postural instability onset. Finally, virtual visual motion with differing visual context appeared to only be affected by visual motion duration. However, there were also strong individual differences in postural responses to visual motion, which has not been broadly addressed in the literature. As a whole this thesis can exemplify the importance of visual information on both perceptual and behavioural responses related to posture and balance

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Sensory Augmentation for Balance Rehabilitation Using Skin Stretch Feedback

    Get PDF
    This dissertation focuses on the development and evaluation of portable sensory augmentation systems that render skin-stretch feedback of posture for standing balance training and for postural control improvement. Falling is one of the main causes of fatal injuries among all members of the population. The high incidence of fall-related injuries also leads to high medical expenses, which cost approximately $34 billion annually in the United States. People with neurological diseases, e.g., stroke, multiple sclerosis, spinal cord injuries, and the elderly are more prone to falling when compared to healthy individuals. Falls among these populations can also lead to hip fracture, or even death. Thus, several balance and gait rehabilitation approaches have been developed to reduce the risk of falling. Traditionally, a balance-retraining program includes a series of exercises for trainees to strengthen their sensorimotor and musculoskeletal systems. Recent advances in technology have incorporated biofeedback such as visual, auditory, or haptic feedback to provide the users with extra cues about their postural sway. Studies have also demonstrated the positive effects of biofeedback on balance control. However, current applications of biofeedback for interventions in people with impaired balance are still lacking some important characteristics such as portability (in-home care), small-size, and long-term viability. Inspired by the concept of light touch, a light, small, and wearable sensory augmentation system that detects body sway and supplements skin stretch on one’s fingertip pad was first developed. The addition of a shear tactile display could significantly enhance the sensation to body movement. Preliminary results have shown that the application of passive skin stretch feedback at the fingertip enhanced standing balance of healthy young adults. Based on these findings, two research directions were initiated to investigate i) which dynamical information of postural sway could be more effectively conveyed by skin stretch feedback, and ii) how can such feedback device be easily used in the clinical setting or on a daily basis. The major sections of this research are focused on understanding how the skin stretch feedback affects the standing balance and on quantifying the ability of humans to interpret the cutaneous feedback as the cues of their physiological states. Experimental results from both static and dynamic balancing tasks revealed that healthy subjects were able to respond to the cues and subsequently correct their posture. However, it was observed that the postural sway did not generally improve in healthy subjects due to skin stretch feedback. A possible reason was that healthy subjects already had good enough quality sensory information such that the additional artificial biofeedback may have interfered with other sensory cues. Experiments incorporating simulated sensory deficits were further conducted and it was found that subjects with perturbed sensory systems (e.g., unstable surface) showed improved balance due to skin stretch feedback when compared to the neutral standing conditions. Positive impacts on balance performance have also been demonstrated among multiple sclerosis patients when they receive skin stretch feedback from a sensory augmentation walker. The findings in this research indicated that the skin stretch feedback rendered by the developed devices affected the human balance and can potentially compensate underlying neurological or musculoskeletal disorders, therefore enhancing quiet standing postural control
    corecore