5,154 research outputs found

    Buffer Sizing for 802.11 Based Networks

    Get PDF
    We consider the sizing of network buffers in 802.11 based networks. Wireless networks face a number of fundamental issues that do not arise in wired networks. We demonstrate that the use of fixed size buffers in 802.11 networks inevitably leads to either undesirable channel under-utilization or unnecessary high delays. We present two novel dynamic buffer sizing algorithms that achieve high throughput while maintaining low delay across a wide range of network conditions. Experimental measurements demonstrate the utility of the proposed algorithms in a production WLAN and a lab testbed.Comment: 14 pages, to appear on IEEE/ACM Transactions on Networkin

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table

    Class-Based Weighted Window for TCP Fairness in WLANs

    Get PDF
    The explosive growth of the Internet has extended to the wireless domain. The number of Internet users and mobile devices with wireless Internet access is continuously increasing. However, the network resource is essentially limited, and fair service is a key issue in bandwidth allocation. In this research, the focus is on the issue of fairness among wireless stations having different number and direction of flows for different required bandwidth to ensure that fair channel is fairly shared between wireless stations in the same class of bandwidth. It is shown that the current WLANs allocate bandwidth unfairly. It is also identified that the cause of this problem of unfairness is the TCP cumulative ACK mechanism combined with the packet dropping mechanism of AP queue and the irregular space for each wireless station in AP queue. The proposed method allocate converged bandwidth by introducing a Class-Based Weighted Window method which adjusts the TCP window size based on the current conditions of the network and according to the network’s requirements. This method works in wireless stations without requiring any modification in MAC. It can guarantee fair service in terms of throughput among wireless users whether they require the same or different bandwidth.Wireless LAN, TCP, Fairness

    A differentiated Services Architecture for Quality of Service Provisioning in Wireless Local Area Networks

    Get PDF
    Currently the issue of Quality of Service (QoS) is a major problem in IP networks due to the growth in multimedia traffic (e.g. voice and video applications) and therefore many mechanisms like IntServ, DiffServ, etc. have been proposed. Since the IEEE 802.11b (or Wi-Fi) standard was approved in 1999, it has gained in popularity to become the leading Wireless Local Area Network (WLAN) technology with millions of such networks deployed worldwide. Wireless networks have a limited capacity (11 Mbits/s in the case of Wi-Fi networks) owing to the limited amount of frequency spectrum available. At any given time there may be a large number of users contending for access which results in the bandwidth available to each user being severely limited. Moreover, the system does not differentiate between traffic types which means that all traffic, regardless of its importance or priority, experiences the same QoS. An important network application requiring QoS guarantees is the provision of time-bounded services, such as voice over IP and video streaming, where the combination of packet delay, jitter and packet loss will impact on the perceived QoS. Consequently this has led to a large amount of research work focussing mainly on QoS enhancement schemes for the 802.11 MAC mechanism. The Task Group E of the IEEE 802.11 working group has been developing an extension to the Wi-Fi standard that proposes to make changes to the MAC mechanism to support applications with QoS requirements. The 802.11e QoS standard is currently undergoing final revisions before approval expected sometime in 2004. As 802.11e WLAN equipment is not yet available, performance reports can only be based on simulation. The objective of this thesis was to develop a computer simulator that implements the upcoming IEEE 802.11e standard and to use this simulator to evaluate the QoS performance enhancement potential of 802.11e. This thesis discusses the QoS facilities, analyses the MAC protocol enhancements and compares them with the original 802.11 standard. The issue of QoS provisioning is primarily concerned with providing predictable performance guarantees with regard to throughput, packet delay, jitter and packet loss. The simulated results indicate that the proposed QoS enhancements to the MAC will considerably improve QoS performance in 802.11b WLANs. However, in order for the proposed 802.11e QoS mechanism to be effective the 802.11e parameters will need to be continually adjusted in order to ensure QoS guarantees are fulfilled for all traffic loads

    Using Direct-Sequenced Spread Spectrum in a Wired Local Area Network

    Get PDF
    Code division multiple access provides an ability to share channel bandwidth amongst users at the same time. Individual user performance is not degraded with the addition of more users, unlike traditional Ethernet. Using direct sequenced spread spectrum in a wired local area network, network performance is improved. For a network in overload conditions, individual station throughput is increased by nearly 212% while mean end-to-end delay was reduced by 800%. The vast improvement demonstrated by this research has the capability to extend legacy-cabling infrastructures for many years to come while easily accommodating new bandwidth intensive multimedia applications

    Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks

    Get PDF
    In this paper, we propose a new cross-layer framework, named QPART ( QoS br>rotocol for Adhoc Realtime Traffic), which provides QoS guarantees to real-time multimedia applications for wireless ad hoc networks. By adapting the contention window sizes at the MAC layer, QPART schedules packets of flows according to their unique QoS requirements. QPART implements priority-based admission control and conflict resolution to ensure that the requirements of admitted realtime flows is smaller than the network capacity. The novelty of QPART is that it is robust to mobility and variances in channel capacity and imposes no control message overhead on the network
    corecore