2,311 research outputs found

    A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings

    Get PDF
    Buildings are one of the main consumers of energy in cities, which is why a lot of research has been generated around this problem. Especially, the buildings energy management systems must improve in the next years. Artificial intelligence techniques are playing and will play a fundamental role in these improvements. This work presents a systematic review of the literature on researches that have been done in recent years to improve energy management systems for smart building using artificial intelligence techniques. An originality of the work is that they are grouped according to the concept of "Autonomous Cycles of Data Analysis Tasks", which defines that an autonomous management system requires specialized tasks, such as monitoring, analysis, and decision-making tasks for reaching objectives in the environment, like improve the energy efficiency. This organization of the work allows us to establish not only the positioning of the researches, but also, the visualization of the current challenges and opportunities in each domain. We have identified that many types of researches are in the domain of decision-making (a large majority on optimization and control tasks), and defined potential projects related to the development of autonomous cycles of data analysis tasks, feature engineering, or multi-agent systems, among others.European Commissio

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF
    In a context of global carbon emission reduction goals, buildings have been identified to detain valuable energy-saving abilities. With the exponential increase of smart, connected building automation systems, massive amounts of data are now accessible for analysis. These coupled with powerful data science methods and machine learning algorithms present a unique opportunity to identify untapped energy-saving potentials from field information, and effectively turn buildings into active assets of the built energy infrastructure.However, the diversity of building occupants, infrastructures, and the disparities in collected information has produced disjointed scales of analytics that make it tedious for approaches to scale and generalize over the building stock.This coupled with the lack of standards in the sector has hindered the broader adoption of data science practices in the field, and engendered the following questioning:How can data science facilitate the scaling of approaches and bridge disconnected spatiotemporal scales of the built environment to deliver enhanced energy-saving strategies?This thesis focuses on addressing this interrogation by investigating data-driven, scalable, interpretable, and multi-scale approaches across varying types of analytical classes. The work particularly explores descriptive, predictive, and prescriptive analytics to connect occupants, buildings, and urban energy planning together for improved energy performances.First, a novel multi-dimensional data-mining framework is developed, producing distinct dimensional outlines supporting systematic methodological approaches and refined knowledge discovery. Second, an automated building heat dynamics identification method is put forward, supporting large-scale thermal performance examination of buildings in a non-intrusive manner. The method produced 64\% of good quality model fits, against 14\% close, and 22\% poor ones out of 225 Dutch residential buildings. %, which were open-sourced in the interest of developing benchmarks. Third, a pioneering hierarchical forecasting method was designed, bridging individual and aggregated building load predictions in a coherent, data-efficient fashion. The approach was evaluated over hierarchies of 37, 140, and 383 nodal elements and showcased improved accuracy and coherency performances against disjointed prediction systems.Finally, building occupants and urban energy planning strategies are investigated under the prism of uncertainty. In a neighborhood of 41 Dutch residential buildings, occupants were determined to significantly impact optimal energy community designs in the context of weather and economic uncertainties.Overall, the thesis demonstrated the added value of multi-scale approaches in all analytical classes while fostering best data-science practices in the sector from benchmarks and open-source implementations
    • …
    corecore