6,425 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Softwarization in Future Mobile Networks and Energy Efficient Networks

    Get PDF
    The data growth generated by pervasive mobile devices and the Internet of Things at the network edge (i.e., closer to mobile users), couple with the demand for ultra-low latency, requires high computation resources which are not available at the end-user device. This demands a new network design paradigm in order to handle user demands. As a remedy, a new MN network design paradigm has emerged, called Mobile Edge Computing (MEC), to enable low-latency and location-aware data processing at the network edge. MEC is based on network function virtualization (NFV) technology, where mobile network functions (NFs) that formerly existed in the evolved packet core (EPC) are moved to the access network [i.e., they are deployed on local cloud platforms in proximity to the base stations (BSs)]. In order to reap the full benefits of the virtualized infrastructure, the NFV technology shall be combined with intelligent mechanisms for handling network resources. Despite the potential benefits presented by MEC, energy consumption is a challenge due to the foreseen dense deployment of BSs empowered with computation capabilities. In the effort to build greener 5G mobile network (MN), we advocate the integration of energy harvesting (EH) into future edge systems
    • …
    corecore