4,940 research outputs found

    An artificial intelligence based quorum system for the improvement of the lifespan of sensor networks.

    Get PDF
    Artificial Intelligence-based Quorum systems are used to solve the energy crisis in real-time wireless sensor networks. They tend to improve the coverage, connectivity, latency, and lifespan of the networks where millions of sensor nodes need to be deployed in a smart grid system. The reality is that sensors may consume more power and reduce the lifetime of the network. This paper proposes a quorum-based grid system where the number of sensors in the quorum is increased without actually increasing quorums themselves, leading to improvements in throughput and latency by 14.23%. The proposed artificial intelligence scheme reduces the network latency due to an increase in time slots over conventional algorithms previously proposed. Secondly, energy consumption is reduced by weighted load balancing, improving the network’s actual lifespan. Our experimental results show that the coverage rate is increased on an average of 11% over the conventional Coverage Contribution Area (CCA), Partial Coverage with Learning Automata (PCLA), and Probabilistic Coverage Protocol (PCP) protocols respectively

    CATS: linearizability and partition tolerance in scalable and self-organizing key-value stores

    Get PDF
    Distributed key-value stores provide scalable, fault-tolerant, and self-organizing storage services, but fall short of guaranteeing linearizable consistency in partially synchronous, lossy, partitionable, and dynamic networks, when data is distributed and replicated automatically by the principle of consistent hashing. This paper introduces consistent quorums as a solution for achieving atomic consistency. We present the design and implementation of CATS, a distributed key-value store which uses consistent quorums to guarantee linearizability and partition tolerance in such adverse and dynamic network conditions. CATS is scalable, elastic, and self-organizing; key properties for modern cloud storage middleware. Our system shows that consistency can be achieved with practical performance and modest throughput overhead (5%) for read-intensive workloads

    Mobile distributed authentication protocol

    Get PDF
    Networks access control is a crucial topic and authentication is a pre-requisite of that process. Most existing authentication protocols (for example that used in the GSM mobile network) are centralised. Depending on a single entity is undesirable as it has security, trust and availability issues. This paper proposes a new protocol, GSM-secure network access protocol (G-SNAP). In G-SNAP, the authentication procedure and network access control is handled by a quorum of authentication centres. The advantages of the novel protocol include increased security, availability and distributed trust

    An asynchronous message-passing distributed algorithm for the global critical section problem

    Full text link
    This paper considers the global (l,k)(l,k)-CS problem which is the problem of controlling the system in such a way that, at least ll and at most kk processes must be in the CS at a time in the network. In this paper, a distributed solution is proposed in the asynchronous message-passing model. Our solution is a versatile composition method of algorithms for ll-mutual inclusion and kk-mutual exclusion. Its message complexity is O(Q)O(|Q|), where Q|Q| is the maximum size for the quorum of a coterie used by the algorithm, which is typically Q=n|Q| = \sqrt{n}.Comment: This is a modified version of the conference paper in PDAA201

    Scalable Persistent Storage for Erlang

    Get PDF
    The many core revolution makes scalability a key property. The RELEASE project aims to improve the scalability of Erlang on emergent commodity architectures with 100,000 cores. Such architectures require scalable and available persistent storage on up to 100 hosts. We enumerate the requirements for scalable and available persistent storage, and evaluate four popular Erlang DBMSs against these requirements. This analysis shows that Mnesia and CouchDB are not suitable persistent storage at our target scale, but Dynamo-like NoSQL DataBase Management Systems (DBMSs) such as Cassandra and Riak potentially are. We investigate the current scalability limits of the Riak 1.1.1 NoSQL DBMS in practice on a 100-node cluster. We establish for the first time scientifically the scalability limit of Riak as 60 nodes on the Kalkyl cluster, thereby confirming developer folklore. We show that resources like memory, disk, and network do not limit the scalability of Riak. By instrumenting Erlang/OTP and Riak libraries we identify a specific Riak functionality that limits scalability. We outline how later releases of Riak are refactored to eliminate the scalability bottlenecks. We conclude that Dynamo-style NoSQL DBMSs provide scalable and available persistent storage for Erlang in general, and for our RELEASE target architecture in particular

    Tree-Chain: A Fast Lightweight Consensus Algorithm for IoT Applications

    Full text link
    Blockchain has received tremendous attention in non-monetary applications including the Internet of Things (IoT) due to its salient features including decentralization, security, auditability, and anonymity. Most conventional blockchains rely on computationally expensive consensus algorithms, have limited throughput, and high transaction delays. In this paper, we propose tree-chain a scalable fast blockchain instantiation that introduces two levels of randomization among the validators: i) transaction level where the validator of each transaction is selected randomly based on the most significant characters of the hash function output (known as consensus code), and ii) blockchain level where validator is randomly allocated to a particular consensus code based on the hash of their public key. Tree-chain introduces parallel chain branches where each validator commits the corresponding transactions in a unique ledger. Implementation results show that tree-chain is runnable on low resource devices and incurs low processing overhead, achieving near real-time transaction settlement

    The Raincore Distributed Session Service for Networking Elements

    Get PDF
    Motivated by the explosive growth of the Internet, we study efficient and fault-tolerant distributed session layer protocols for networking elements. These protocols are designed to enable a network cluster to share the state information necessary for balancing network traffic and computation load among a group of networking elements. In addition, in the presence of failures, they allow network traffic to fail-over from failed networking elements to healthy ones. To maximize the overall network throughput of the networking cluster, we assume a unicast communication medium for these protocols. The Raincore Distributed Session Service is based on a fault-tolerant token protocol, and provides group membership, reliable multicast and mutual exclusion services in a networking environment. We show that this service provides atomic reliable multicast with consistent ordering. We also show that Raincore token protocol consumes less overhead than a broadcast-based protocol in this environment in terms of CPU task-switching. The Raincore technology was transferred to Rainfinity, a startup company that is focusing on software for Internet reliability and performance. Rainwall, Rainfinity’s first product, was developed using the Raincore Distributed Session Service. We present initial performance results of the Rainwall product that validates our design assumptions and goals
    corecore