7,606 research outputs found

    Explicit Load Balancing Technique for NGEO Satellite IP Networks With On-Board Processing Capabilities

    Get PDF
    科研費報告書収録論文(課題番号:17500030/研究代表者:加藤寧/インターネットと高親和性を有する次世代低軌道衛星ネットワークに関する基盤研究

    Preliminary study of cooperation in hybrid ad-hoc networks

    Get PDF
    In this paper, we present a first approach to evolve a cooperative behavior in ad hoc networks. Since wireless nodes are energy constrained, it may not be in the best interest of a node to always accept relay requests. On the other hand, if all nodes decide not to expend energy in relaying, then network throughput will drop dramatically. Both these extreme scenarios are unfavorable to the interests of a user. In this paper we deal with the issue of user cooperation in ad hoc networks by developing the algorithm called Generous Tit-For-Tat. We assume that nodes are rational, i.e., their actions are strictly determined by self-interest, and that each node is associated with a minimum lifetime constraint. Given these lifetime constraints and the assumption of rational behavior, we study the added behavior of the network.En este proyecto mostramos un primer acercamiento a la evolución de las redes Ad-Hoc cooperativas. Puesto que los nodos wireless disponen de energía finita, puede que no estén interesados en aceptar transmitir tráfico de otros nodos. Por otra parte, si ningún nodo decide gastar energía en retransmitir tráfico de otros, entonces la tasa de transferencia en la red cae críticamente. Estos casos extremos son desfavorables para el usuario. En este trabajo tratamos estas cuestiones gracias al desarrollo de un algoritmo llamado "Generous Tit-For Tat". Asumiremos que los nodos son egoístas y tienen energía finita, así que las decisiones se determinarán por propio interés y cada nodo será asociado con un tiempo limitado de energía. Dadas esas limitaciones y la suposición del comportamiento racional estudiaremos el comportamiento agregado de la red.En aquest treball mostrem una primera aproximació a l'evolució de les xarxes Ad-Hoc cooperatives. Donat que els nodes wireless disposen d'energia finita, poden no estar interessats en transmetre tràfic d'altres nodes. Per altra banda, si cap node decideix gastar energia en passar tràfic d'altres, llavors la tassa de transferència a la xarxa cau críticament. Aquests casos extrems son desfavorables per l'usuari. En aquest treball tractem aquestes qüestions gràcies al desenvolupament d'un algoritme anomenat "Generous Tit-For-Tat". Assumirem que els nodes son egoistes y tenen energia finita, així que les decisions es determinaran pel seu propi interès i cada node s'associarà amb un temps limitat d'energia. Donades aquestes limitacions y la suposició del comportament racional, estudiarem el comportament agregat de la xarxa.Nota: Aquest document conté originàriament altre material i/o programari només consultable a la Biblioteca de Ciència i Tecnologia

    SAPIENT-Simulator Modelling and Architecture

    Get PDF
    Future aeronautical communications will be based on the TCP/IP protocol stack, and will occur through a number of different data-link channels (e.g., satellite, terrestrial), with multipath capabilities – the so-called multilink. Seamless vertical handover between different data-links is a requirement and it will improve the safety and reliability of AEROCOM systems, possibly enabling remote-piloted aircrafts (RPAs) for civil operations. This paper describes the modelling, design and implementation of an AEROCOM system simulator based on OMNeT++, developed in the framework of the SAPIENT EU project. The simulator includes models of the aircrafts, including their mobility, terrestrial and satellite data links and core network. Moreover, it includes a solution to simulate the effect of multilink capabilities, which enables one to test multilink decision policies

    Energy Management in LTE Networks

    Get PDF
    Wireless cellular networks have seen dramatic growth in number of mobile users. As a result, data requirements, and hence the base-station power consumption has increased significantly. It in turn adds to the operational expenditures and also causes global warming. The base station power consumption in long-term evolution (LTE) has, therefore, become a major challenge for vendors to stay green and profitable in competitive cellular industry. It necessitates novel methods to devise energy efficient communication in LTE. Importance of the topic has attracted huge research interests worldwide. Energy saving (ES) approaches proposed in the literature can be broadly classified in categories of energy efficient resource allocation, load balancing, carrier aggregation, and bandwidth expansion. Each of these methods has its own pros and cons leading to a tradeoff between ES and other performance metrics resulting into open research questions. This paper discusses various ES techniques for the LTE systems and critically analyses their usability through a comprehensive comparative study

    Handover and Channel Allocation Mechanisms in Mobile Satellite Networks

    Get PDF
    In this work we study first handover prediction in non-geostationary mobile satellite networks. The ultimate choice of the transition path depends on UT position and signal strength. We investigate the procedure of beam monitoring and propose UT maximum residence as the criterion for path selection. The UT must operate both in full- and half-duplex mode, the latter being desirable when power limitations are imposed. We propose a scheme that achieves this goal and guarantees efficient diversity provision. Constant delay contours on the earth's surface are defined. The problem of reliable time delay acquisition is addressed, in case synchronization is lost. The SBS solves that either by using the known estimate of UT position or by requesting a measurement report by the UT. The problem of channel allocation appears in cellular networks of every kind. Calls arising in the cell overlap area have access to channels of more than one base station and may choose which base station they will use to establish connection. In that case the problems of base station and channel assignment arise jointly. We address the problem in a linear cellular network and aim at the minimumnumber of utilized channels. We present two algorithms: The first one expands Load Balancing in clique populations and is Sequential Clique Load Balancing (SCLB). The second one is named Clique Load Balancing with Inverse Water-Filling (CLB-IWF). In a dynamic environment, we unify SCLB and CLB-IWF into CLB-DA, which comprises Dynamic Allocation. CLB-DA is compared with Least Loaded Routing (LLR) policy and with Random Routing policy. We finally deduce that at light loads CLB-DA outperforms LLR, attaining smaller blocking probability, whereas at heavier loads all three policies converge

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Building high-performance web-caching servers

    Get PDF

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    corecore