618 research outputs found

    Load Balancing Using Dynamic Ant Colony System Based Fault Tolerance in Grid Computing

    Get PDF
    Load balancing is often disregarded when implementing fault tolerance capability in grid computing. Effective load balancing ensures that a fair amount of load is assigned to each resource, based on its fitness rather than assigning a majority of tasks to the most fitting resources. Proper load balancing in a fault tolerance system would also reduce the bottleneck at the most fit resources and increase utilization of other resources. This paper presents a fault tolerance algorithm based on ant colony system, that considers load balancing based on resource fitness with resubmission and checkpoint technique, to improve fault tolerance capability in grid computing. Experimental results indicated that the proposed fault tolerance algorithm has better execution time, throughput, makespan, latency, load balancing and success rate

    Classification and Performance Study of Task Scheduling Algorithms in Cloud Computing Environment

    Get PDF
    Cloud computing is becoming very common in recent years and is growing rapidly due to its attractive benefits and features such as resource pooling, accessibility, availability, scalability, reliability, cost saving, security, flexibility, on-demand services, pay-per-use services, use from anywhere, quality of service, resilience, etc. With this rapid growth of cloud computing, there may exist too many users that require services or need to execute their tasks simultaneously by resources provided by service providers. To get these services with the best performance, and minimum cost, response time, makespan, effective use of resources, etc. an intelligent and efficient task scheduling technique is required and considered as one of the main and essential issues in the cloud computing environment. It is necessary for allocating tasks to the proper cloud resources and optimizing the overall system performance. To this end, researchers put huge efforts to develop several classes of scheduling algorithms to be suitable for the various computing environments and to satisfy the needs of the various types of individuals and organizations. This research article provides a classification of proposed scheduling strategies and developed algorithms in cloud computing environment along with the evaluation of their performance. A comparison of the performance of these algorithms with existing ones is also given. Additionally, the future research work in the reviewed articles (if available) is also pointed out. This research work includes a review of 88 task scheduling algorithms in cloud computing environment distributed over the seven scheduling classes suggested in this study. Each article deals with a novel scheduling technique and the performance improvement it introduces compared with previously existing task scheduling algorithms. Keywords: Cloud computing, Task scheduling, Load balancing, Makespan, Energy-aware, Turnaround time, Response time, Cost of task, QoS, Multi-objective. DOI: 10.7176/IKM/12-5-03 Publication date:September 30th 2022

    Computation Offloading and Scheduling in Edge-Fog Cloud Computing

    Get PDF
    Resource allocation and task scheduling in the Cloud environment faces many challenges, such as time delay, energy consumption, and security. Also, executing computation tasks of mobile applications on mobile devices (MDs) requires a lot of resources, so they can offload to the Cloud. But Cloud is far from MDs and has challenges as high delay and power consumption. Edge computing with processing near the Internet of Things (IoT) devices have been able to reduce the delay to some extent, but the problem is distancing itself from the Cloud. The fog computing (FC), with the placement of sensors and Cloud, increase the speed and reduce the energy consumption. Thus, FC is suitable for IoT applications. In this article, we review the resource allocation and task scheduling methods in Cloud, Edge and Fog environments, such as traditional, heuristic, and meta-heuristics. We also categorize the researches related to task offloading in Mobile Cloud Computing (MCC), Mobile Edge Computing (MEC), and Mobile Fog Computing (MFC). Our categorization criteria include the issue, proposed strategy, objectives, framework, and test environment.

    Study on Different Topology Manipulation Algorithms in Wireless Sensor Network

    Get PDF
    Wireless sensor network (WSN) comprises of spatially distributed autonomous sensors to screen physical or environmental conditions and to agreeably go their information through the network to a principle area. One of the critical necessities of a WSN is the efficiency of vitality, which expands the life time of the network. At the same time there are some different variables like Load Balancing, congestion control, coverage, Energy Efficiency, mobility and so on. A few methods have been proposed via scientists to accomplish these objectives that can help in giving a decent topology control. In the piece, a few systems which are accessible by utilizing improvement and transformative strategies that give a multi target arrangement are examined. In this paper, we compare different algorithms' execution in view of a few parameters intended for every target and the outcomes are analyzed. DOI: 10.17762/ijritcc2321-8169.15029

    Analyse the Performance of Mobile Peer to Peer Network using Ant Colony Optimization

    Get PDF
    A mobile peer-to-peer computer network is the one in which each computer in the network can act as a client or server for the other computers in the network. The communication process among the nodes in the mobile peer to peer network requires more no of messages. Due to this large number of messages passing, propose an interconnection structure called distributed Spanning Tree (DST) and it improves the efficiency of the mobile peer to peer network. The proposed method improves the data availability and consistency across the entire network and also reduces the data latency and the required number of message passes for any specific application in the network. Further to enhance the effectiveness of the proposed system, the DST network is optimized with the Ant Colony Optimization method. It gives the optimal solution of the DST method and increased availability, enhanced consistency and scalability of the network. The simulation results shows that reduces the number of message sent for any specific application and average delay and increases the packet delivery ratio in the network

    Load Balancing in Heterogeneous Cloud Environments by Using PROMETHEE Method

    Get PDF
    Abstract: Efficient Scheduling of tasks in a cloud environment improves resources utilization thereby meeting users' requirements. One of the most important objectives of a scheduling algorithm in cloud environment is a balanced load distribution over various resources for enhancing the overall performance of the cloud. Such a scheduling is complex in nature due to the dynamicity of resources and incoming application specifications. In this paper, we employ PROMETHEE decision making model to design a scheduling algorithm, called PROMETHEE Load Balancing (PLB).This paper formulates the load balancing issue as a multi-criteria decision making problem and aims to achieve well-balanced load across virtual machines for maximizing the overall throughput of the cloud. Extensive simulation results in CloudSim environment show that the proposed algorithm outperforms existing algorithms in terms of load balancing index (LBI), VM load variation, makespan, average execution time and waiting time
    • …
    corecore