16 research outputs found

    Using data mining to study the impact of topology characteristics on the performance of wireless mesh networks

    Get PDF
    This paper quantifies the impact of topological characteristics on the performance of single radio multichannel IEEE802.11 mesh networks. Topological characteristics are the number of nodes per subnetwork, the hop count, the neighbor node density, the hidden nodes, the number of nodes in the neighborhood of the gateway, and the hidden nodes in the neighborhood of the gateway. Network performance metrics are throughput, fairness and delay. The data mining Support Vector Machine (SVM) model was used to extract the relationships between the network topology metrics and the network per- formance metrics based on data results obtained through ns- 2 simulation of random networks. The results obtained can be used as a basis to design channel assignment algorithms or to aid the deployment and management of single radio wireless mesh networks.Fundação para a Ciência e a Tecnologia (FCT) - SitMe project from QREN–ON.2 program and FCT SFRH/BD/13444/2003

    DYNAMIC ROUTING WITH CROSS-LAYER ADAPTATIONS FOR MULTI-HOP WIRELESS NETWORKS

    Get PDF
    In recent years there has been a proliferation of research on a number of wireless multi-hop networks that include mobile ad-hoc networks, wireless mesh networks, and wireless sensor networks (WSNs). Routing protocols in such networks are of- ten required to meet design objectives that include a combination of factors such as throughput, delay, energy consumption, network lifetime etc. In addition, many mod- ern wireless networks are equipped with multi-channel radios, where channel selection plays an important role in achieving the same design objectives. Consequently, ad- dressing the routing problem together with cross-layer adaptations such as channel selection is an important issue in such networks. In this work, we study the joint routing and channel selection problem that spans two domains of wireless networks. The first is a cost-effective and scalable wireless-optical access networks which is a combination of high-capacity optical access and unethered wireless access. The joint routing and channel selection problem in this case is addressed under an anycasting paradigm. In addition, we address two other problems in the context of wireless- optical access networks. The first is on optimal gateway placement and network planning for serving a given set of users. And the second is the development of an analytical model to evaluate the performance of the IEEE 802.11 DCF in radio-over- fiber wireless LANs. The second domain involves resource constrained WSNs where we focus on route and channel selection for network lifetime maximization. Here, the problem is further exacerbated by distributed power control, that introduces addi- tional design considerations. Both problems involve cross-layer adaptations that must be solved together with routing. Finally, we present an analytical model for lifetime calculation in multi-channel, asynchronous WSNs under optimal power control

    Optical label-controlled transparent metro-access network interface

    Get PDF

    Wireless Multi Hop Access Networks and Protocols

    Get PDF
    As more and more applications and services in our society now depend on the Internet, it is important that dynamically deployed wireless multi hop networks are able to gain access to the Internet and other infrastructure networks and services. This thesis proposes and evaluates solutions for providing multi hop Internet Access. It investigates how ad hoc networks can be combined with wireless and mesh networks in order to create wireless multi hop access networks. When several access points to the Internet are available, and the mobile node roams to a new access point, the node has to make a decision when and how to change its point of attachment. The thesis describes how to consider the rapid fluctuations of the wireless medium, how to handle the fact that other nodes on the path to the access point are also mobile which results in frequent link and route breaks, and the impact the change of attachment has on already existing connections. Medium access and routing protocols have been developed that consider both the long term and the short term variations of a mobile wireless network. The long term variations consider the fact that as nodes are mobile, links will frequently break and new links appear and thus the network topology map is constantly redrawn. The short term variations consider the rapid fluctuations of the wireless channel caused by mobility and multi path propagation deviations. In order to achieve diversity forwarding, protocols are presented which consider the network topology and the state of the wireless channel when decisions about forwarding need to be made. The medium access protocols are able to perform multi dimensional fast link adaptation on a per packet level with forwarding considerations. This i ncludes power, rate, code and channel adaptation. This will enable the type of performance improvements that are of significant importance for the success of multi hop wireless networks

    Heterogeneous Wireless Networks: An Analysis of Network and Service Level Diversity

    Get PDF
    Future wireless systems will be a collection of symbiotic and hierarchical networks that address different aspects of communication needs. This architectural heterogeneity constitutes a network level diversity, where wireless domains can benefit from each other's spare resources in terms of bandwidth and energy. The dissertation investigates the network diversity through particularly interesting scenarios that involve capacity-limited multi-hop ad hoc networks and high-bandwidth wired or wireless infrastructures. Heterogeneity and infrastructures not only exist at the level of networking technologies and architectures, but also at the level of available services in each network domain. Efficient discovery of services across the domains and allocation of service points to individual users are beneficial for facilitating the actual communication, supplying survivable services, and better utilizing the network resources. These concepts together define the service level diversity, which is the second topic studied in our dissertation. In this dissertation, we first focus on a large-scale hybrid network, where a relatively resource abundant infrastructure network overlays a multi-hop wireless network. Using a random geometric random graph model and defining appropriate connectivity constraints, we derive the overall transport capacity of this hybrid network. In the sequel, we dwell upon hybrid networks with arbitrary size and topology. We develop a Quality of Service (QoS) based framework to utilize the joint resources of the ad hoc and infrastructure tier with minimal power exposure on other symbiotic networks that operate over the same radio frequency bands. The framework requires a cross-layer approach to adequately satisfy the system objectives and individual user demands. Since the problem is proven to be intractable, we explore sub-optimal but efficient algorithms to solve it by relying on derived performance bounds. In the last part of the dissertation, we shift our attention from network level diversity to service level diversity. After investigating possible resource discovery mechanisms in conjunction with their applicability to multi-hop wireless environments, we present our own solution, namely Distributed Service Discovery Protocol (DSDP). DSDP enables a highly scalable, survivable, and fast resource discovery under a very dynamic network topology. It also provides the necessary architectural and signaling mechanisms to effectively implement resource allocation techniques

    Metaverse for Wireless Systems: Architecture, Advances, Standardization, and Open Challenges

    Full text link
    The growing landscape of emerging wireless applications is a key driver toward the development of novel wireless system designs. Such a design can be based on the metaverse that uses a virtual model of the physical world systems along with other schemes/technologies (e.g., optimization theory, machine learning, and blockchain). A metaverse using a virtual model performs proactive intelligent analytics prior to a user request for efficient management of the wireless system resources. Additionally, a metaverse will enable self-sustainability to operate wireless systems with the least possible intervention from network operators. Although the metaverse can offer many benefits, it faces some challenges as well. Therefore, in this tutorial, we discuss the role of a metaverse in enabling wireless applications. We present an overview, key enablers, design aspects (i.e., metaverse for wireless and wireless for metaverse), and a novel high-level architecture of metaverse-based wireless systems. We discuss metaverse management, reliability, and security of the metaverse-based system. Furthermore, we discuss recent advances and standardization of metaverse-enabled wireless system. Finally, we outline open challenges and present possible solutions

    Modeling and Optimization of Next-Generation Wireless Access Networks

    Get PDF
    The ultimate goal of the next generation access networks is to provide all network users, whether they are fixed or mobile, indoor or outdoor, with high data rate connectivity, while ensuring a high quality of service. In order to realize this ambitious goal, delay, jitter, error rate and packet loss should be minimized: a goal that can only be achieved through integrating different technologies, including passive optical networks, 4th generation wireless networks, and femtocells, among others. This thesis focuses on medium access control and physical layers of future networks. In this regard, the first part of this thesis discusses techniques to improve the end-to-end quality of service in hybrid optical-wireless networks. In these hybrid networks, users are connected to a wireless base station that relays their data to the core network through an optical connection. Hence, by integrating wireless and optical parts of these networks, a smart scheduler can predict the incoming traffic to the optical network. The prediction data generated herein is then used to propose a traffic-aware dynamic bandwidth assignment algorithm for reducing the end-to-end delay. The second part of this thesis addresses the challenging problem of interference management in a two-tier macrocell/femtocell network. A high quality, high speed connection for indoor users is ensured only if the network has a high signal to noise ratio. A requirement that can be fulfilled with using femtocells in cellular networks. However, since femtocells generate harmful interference to macrocell users in proximity of them, careful analysis and realistic models should be developed to manage the introduced interference. Thus, a realistic model for femtocell interference outside suburban houses is proposed and several performance measures, e.g., signal to interference and noise ratio and outage probability are derived mathematically for further analysis. The quality of service of cellular networks can be degraded by several factors. For example, in industrial environments, simultaneous fading and strong impulsive noise significantly deteriorate the error rate performance. In the third part of this thesis, a technique to improve the bit error rate of orthogonal frequency division multiplexing systems in industrial environments is presented. This system is the most widely used technology in next-generation networks, and is very susceptible to impulsive noise, especially in fading channels. Mathematical analysis proves that the proposed method can effectively mitigate the degradation caused by impulsive noise and significantly improve signal to interference and noise ratio and bit error rate, even in frequency-selective fading channels
    corecore