9,037 research outputs found

    Load balanced short path routing in large-scale wireless networks using area-preserving maps

    Full text link

    Reliable routing scheme for indoor sensor networks

    Get PDF
    Indoor Wireless sensor networks require a highly dynamic, adaptive routing scheme to deal with the high rate of topology changes due to fading of indoor wireless channels. Besides that, energy consumption rate needs to be consistently distributed among sensor nodes and efficient utilization of battery power is essential. If only the link reliability metric is considered in the routing scheme, it may create long hops routes, and the high quality paths will be frequently used. This leads to shorter lifetime of such paths; thereby the entire network's lifetime will be significantly minimized. This paper briefly presents a reliable load-balanced routing (RLBR) scheme for indoor ad hoc wireless sensor networks, which integrates routing information from different layers. The proposed scheme aims to redistribute the relaying workload and the energy usage among relay sensor nodes to achieve balanced energy dissipation; thereby maximizing the functional network lifetime. RLBR scheme was tested and benchmarked against the TinyOS-2.x implementation of MintRoute on an indoor testbed comprising 20 Mica2 motes and low power listening (LPL) link layer provided by CC1000 radio. RLBR scheme consumes less energy for communications while reducing topology repair latency and achieves better connectivity and communication reliability in terms of end-to-end packets delivery performance

    Robust geometric forest routing with tunable load balancing

    Get PDF
    Although geometric routing is proposed as a memory-efficient alternative to traditional lookup-based routing and forwarding algorithms, it still lacks: i) adequate mechanisms to trade stretch against load balancing, and ii) robustness to cope with network topology change. The main contribution of this paper involves the proposal of a family of routing schemes, called Forest Routing. These are based on the principles of geometric routing, adding flexibility in its load balancing characteristics. This is achieved by using an aggregation of greedy embeddings along with a configurable distance function. Incorporating link load information in the forwarding layer enables load balancing behavior while still attaining low path stretch. In addition, the proposed schemes are validated regarding their resilience towards network failures

    Performance evaluation of a new end-to-end traffic-aware routing in MANETs

    Get PDF
    There has been a lot of research effort on developing reactive routing algorithms for mobile ad hoc networks (MANETs) over the past few years. Most of these algorithms consider finding the shortest path from source to destination in building a route. However, this can lead to some network nodes being more overloaded than the others. In MANETs resources, such as node power and channel bandwidth are often at a premium and, therefore, it is important to optimise their use as much as possible. Consequently, a traffic-aware technique to distribute the load is very desirable in order to make good utilisation of nodes' resources. Therefore a number of end-to-end traffic aware techniques have been proposed for reactive routing protocols to deal with this challenging issue. In this paper we contribute to this research effort by proposing a new traffic aware technique that can overcome the limitations of the existing methods. Results from an extensive comparative evaluation show that the new technique has superior performance over similar existing end-to-end techniques in terms of the achieved throughput, end-to-end delay and routing overhead

    Performance study of end-to-end traffic-aware routing

    Get PDF
    There has been a lot research effort on developing reactive routing algorithms for mobile ad hoc networks (MANETs) over the past few years. Most of these algorithms consider finding the shortest path from source to destination in building a route. However, this can lead to some network nodes being more overloaded than the others. In MANETs resources, such as node power and channel bandwidth are often at a premium and, therefore, it is important to optimise their use as much as possible. Consequently, a traffic-aware technique to distribute the load is very desirable in order to make good utilisation of nodes' resources. A number of traffic aware techniques have recently been proposed and can be classified into two categories: end-to-end and on-the-spot. The performance merits of the existing end-to-end traffic aware techniques have been analysed and compared against traditional routing algorithms. There has also been a performance comparison among the existing on-the-spot techniques. However, there has so far been no similar study that evaluates and compares the relative performance merits of end-to-end techniques. In this paper, we describe an extensive performance evaluation of two end-to-end techniques, based on degree of nodal activity and traffic density, using measures based on throughput, end-to-end delay and routing overhead

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Traffic eavesdropping based scheme to deliver time-sensitive data in sensor networks

    Get PDF
    Due to the broadcast nature of wireless channels, neighbouring sensor nodes may overhear packets transmissions from each other even if they are not the intended recipients of these transmissions. This redundant packet reception leads to unnecessary expenditure of battery energy of the recipients. Particularly in highly dense sensor networks, overhearing or eavesdropping overheads can constitute a significant fraction of the total energy consumption. Since overhearing of wireless traffic is unavoidable and sometimes essential, a new distributed energy efficient scheme is proposed in this paper. This new scheme exploits the inevitable overhearing effect as an effective approach in order to collect the required information to perform energy efficient delivery for data aggregation. Based on this approach, the proposed scheme achieves moderate energy consumption and high packet delivery rate notwithstanding the occurrence of high link failure rates. The performance of the proposed scheme is experimentally investigated a testbed of TelosB motes in addition to ns-2 simulations to validate the performed experiments on large-scale network

    Optimization of depth-based routing for underwater wireless sensor networks through intelligent assignment of initial energy

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) are extensively used to explore the diverse marine environment. Energy efficiency is one of the main concerns regarding performance of UWSNs. In a cooperative wireless sensor network, nodes with no energy are known as coverage holes. These coverage holes are created due to non-uniform energy utilization by the sensor nodes in the network. These coverage holes degrade the performance and reduce the lifetime of UWSNs. In this paper, we present an Intelligent Depth Based Routing (IDBR) scheme which addresses this issue and contributes towards maximization of network lifetime. In our proposed scheme, we allocate initial energy to the sensor nodes according to their usage requirements. This idea is helpful to balance energy consumption amongst the nodes and keep the network functional for a longer time as evidenced by the results provided
    • …
    corecore