30,217 research outputs found

    Dynamic load balancing strategies in heterogeneous distributed system

    Get PDF
    Distributed heterogeneous computing is being widely applied to a variety of large size computational problems. This computational environments are consists of multiple het- erogeneous computing modules, these modules interact with each other to solve the prob-lem. Dynamic load balancing in distributed computing system is desirable because it is an important key to establish dependability in a Heterogeneous Distributed Computing Systems (HDCS). Load balancing problem is an optimization problem with exponential solution space. The complexity of dynamic load balancing increases with the size of a HDCS and becomes difficult to solve effectively. The solution to this intractable problem is discussed under different algorithm paradigm.The load submitted to the a HDCS is assumed to be in the form of tasks. Dynamic allocation of n independent tasks to m computing nodes in heterogeneous distributed computing system can be possible through centralized or decentralized control. In central-ized approach,we have formulated load balancing problem considering task and machine heterogeneity as a linear programming problem to minimize the time by which all task completes the execution in makespan.The load balancing problem in HDCS aims to maintain a balanced allocation of tasks while using the computational resources. The system state changes with time on arrival of tasks from the users. Therefore,heterogeneous distributed system is modeled as an M/M/m queue. The task model is represented either as a consistent or an inconsistent expected time to compute (ETC) matrix. A batch mode heuristic has been used to de-sign dynamic load balancing algorithms for heterogeneous distributed computing systems with four different type of machine heterogeneity. A number of experiments have been conducted to study the performance of load balancing algorithms with three different ar-rival rate for the task. A better performance of the algorithms is observed with increasing of heterogeneity in the HDCS.A new codification scheme suitable to simulated annealing and genetic algorithm has been introduced to design dynamic load balancing algorithms for HDCS. These stochastic iterative load balancing algorithms uses sliding window techniques to select a batch of tasks, and allocate them to the computing nodes in the HDCS. The proposed dynamic genetic algorithm based load balancer has been found to be effective, especially in the case of a large number of tasks

    Load Balancing and Virtual Machine Allocation in Cloud-based Data Centers

    Get PDF
    As cloud services see an exponential increase in consumers, the demand for faster processing of data and a reliable delivery of services becomes a pressing concern. This puts a lot of pressure on the cloud-based data centers, where the consumers’ data is stored, processed and serviced. The rising demand for high quality services and the constrained environment, make load balancing within the cloud data centers a vital concern. This project aims to achieve load balancing within the data centers by means of implementing a Virtual Machine allocation policy, based on consensus algorithm technique. The cloud-based data center system, consisting of Virtual Machines has been simulated on CloudSim – a Java based cloud simulator

    Enhanced Cluster Computing Performance Through Proportional Fairness

    Full text link
    The performance of cluster computing depends on how concurrent jobs share multiple data center resource types like CPU, RAM and disk storage. Recent research has discussed efficiency and fairness requirements and identified a number of desirable scheduling objectives including so-called dominant resource fairness (DRF). We argue here that proportional fairness (PF), long recognized as a desirable objective in sharing network bandwidth between ongoing flows, is preferable to DRF. The superiority of PF is manifest under the realistic modelling assumption that the population of jobs in progress is a stochastic process. In random traffic the strategy-proof property of DRF proves unimportant while PF is shown by analysis and simulation to offer a significantly better efficiency-fairness tradeoff.Comment: Submitted to Performance 201

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres
    corecore