173 research outputs found

    LoRaWAN Battery-Free Wireless Sensors Network Designed for Structural Health Monitoring in the Construction Domain.

    Get PDF
    This paper addresses the practical implementation of a wireless sensors network designed to actualize cyber-physical systems that are dedicated to structural health monitoring applications in the construction domain. This network consists of a mesh grid composed of LoRaWAN battery-free wireless sensing nodes that collect physical data and communicating nodes that interface the sensing nodes with the digital world through the Internet. Two prototypes of sensing nodes were manufactured and are powered wirelessly by using a far-field wireless power transmission technique and only one dedicated RF energy source operating in the ISM 868 MHz frequency band. These sensing nodes can simultaneously perform temperature and relative humidity measurements and can transmit the measured data wirelessly over long-range distances by using the LoRa technology and the LoRaWAN protocol. Experimental results for a simplified network confirm that the periodicity of the measurements and data transmission of the sensing nodes can be controlled by the dedicated RF source (embedded in or just controlled by the associated communicating node), by tuning the radiated power density of the RF waves, and without any modification of the software or the hardware implemented in the sensing nodes

    Vibration Monitoring in the Compressed Domain with Energy-Efficient Sensor Networks

    Get PDF
    Structural Health Monitoring (SHM) is crucial for the development of safe infrastructures. Onboard vibration diagnostics implemented by means of smart embedded sensors is a suitable approach to achieve accurate prediction supported by low-cost systems. Networks of sensors can be installed in isolated infrastructures allowing periodic monitoring even in the absence of stable power sources and connections. To fulfill this goal, the present paper proposes an effective solution based on intelligent extreme edge nodes that can sense and compress vibration data onboard, and extract from it a reduced set of statistical descriptors that serve as input features for a machine learning classifier, hosted by a central aggregating unit. Accordingly, only a small batch of meaningful scalars needs to be outsourced in place of long time series, hence paving the way to a considerable decrement in terms of transmission time and energy expenditure. The proposed approach has been validated using a real-world SHM dataset for the task of damage identification from vibration signals. Results demonstrate that the proposed sensing scheme combining data compression and feature estimation at the sensor level can attain classification scores always above 94%, with a sensor life cycle extension up to 350x and 1510x if compared with compression-only and processing-free implementations, respectively

    Ultra-low power IoT applications: from transducers to wireless protocols

    Get PDF
    This dissertation aims to explore Internet of Things (IoT) sensor nodes in various application scenarios with different design requirements. The research provides a comprehensive exploration of all the IoT layers composing an advanced device, from transducers to on-board processing, through low power hardware schemes and wireless protocols for wide area networks. Nowadays, spreading and massive utilization of wireless sensor nodes pushes research and industries to overcome the main limitations of such constrained devices, aiming to make them easily deployable at a lower cost. Significant challenges involve the battery lifetime that directly affects the device operativity and the wireless communication bandwidth. Factors that commonly contrast the system scalability and the energy per bit, as well as the maximum coverage. This thesis aims to serve as a reference and guideline document for future IoT projects, where results are structured following a conventional development pipeline. They usually consider communication standards and sensing as project requirements and low power operation as a necessity. A detailed overview of five leading IoT wireless protocols, together with custom solutions to overcome the throughput limitations and decrease the power consumption, are some of the topic discussed. Low power hardware engineering in multiple applications is also introduced, especially focusing on improving the trade-off between energy, functionality, and on-board processing capabilities. To enhance these features and to provide a bottom-top overview of an IoT sensor node, an innovative and low-cost transducer for structural health monitoring is presented. Lastly, the high-performance computing at the extreme edge of the IoT framework is addressed, with special attention to image processing algorithms running on state of the art RISC-V architecture. As a specific deployment scenario, an OpenCV-based stack, together with a convolutional neural network, is assessed on the octa-core PULP SoC

    IoT for measurements and measurements for IoT

    Get PDF
    The thesis is framed in the broad strand of the Internet of Things, providing two parallel paths. On one hand, it deals with the identification of operational scenarios in which the IoT paradigm could be innovative and preferable to pre-existing solutions, discussing in detail a couple of applications. On the other hand, the thesis presents methodologies to assess the performance of technologies and related enabling protocols for IoT systems, focusing mainly on metrics and parameters related to the functioning of the physical layer of the systems

    Powering Sigfox nodes with harvested energy

    Get PDF
    Sigfox is one of the popular LPWAN technologies used in the Internet of Things. As in the case of many other wireless protocols, Sigfox nodes are mainly powered with batteries, which leads to important maintenance costs and slows down its acceptance. Enabling such systems to work on harvested energy will facilitate their use and acceptance. We designed and tested a Sigfox node that can be powered by a 1 cm2 solar cell, opening the door to further optimization in size and costs. Preliminary tests made at the window of one of our office show that one can transmit tens of message per day with that node

    A holistic review of cybersecurity and reliability perspectives in smart airports

    Get PDF
    Advances in the Internet of Things (IoT) and aviation sector have resulted in the emergence of smart airports. Services and systems powered by the IoT enable smart airports to have enhanced robustness, efficiency and control, governed by real-time monitoring and analytics. Smart sensors control the environmental conditions inside the airport, automate passenger-related actions and support airport security. However, these augmentations and automation introduce security threats to network systems of smart airports. Cyber-attackers demonstrated the susceptibility of IoT systems and networks to Advanced Persistent Threats (APT), due to hardware constraints, software flaws or IoT misconfigurations. With the increasing complexity of attacks, it is imperative to safeguard IoT networks of smart airports and ensure reliability of services, as cyber-attacks can have tremendous consequences such as disrupting networks, cancelling travel, or stealing sensitive information. There is a need to adopt and develop new Artificial Intelligence (AI)-enabled cyber-defence techniques for smart airports, which will address the challenges brought about by the incorporation of IoT systems to the airport business processes, and the constantly evolving nature of contemporary cyber-attacks. In this study, we present a holistic review of existing smart airport applications and services enabled by IoT sensors and systems. Additionally, we investigate several types of cyber defence tools including AI and data mining techniques, and analyse their strengths and weaknesses in the context of smart airports. Furthermore, we provide a classification of smart airport sub-systems based on their purpose and criticality and address cyber threats that can affect the security of smart airport\u27s networks

    A holistic review of cybersecurity and reliability perspectives in smart airports

    Get PDF
    Advances in the Internet of Things (IoT) and aviation sector have resulted in the emergence of smart airports. Services and systems powered by the IoT enable smart airports to have enhanced robustness, efficiency and control, governed by real-time monitoring and analytics. Smart sensors control the environmental conditions inside the airport, automate passenger-related actions and support airport security. However, these augmentations and automation introduce security threats to network systems of smart airports. Cyber-attackers demonstrated the susceptibility of IoT systems and networks to Advanced Persistent Threats (APT), due to hardware constraints, software flaws or IoT misconfigurations. With the increasing complexity of attacks, it is imperative to safeguard IoT networks of smart airports and ensure reliability of services, as cyber-attacks can have tremendous consequences such as disrupting networks, cancelling travel, or stealing sensitive information. There is a need to adopt and develop new Artificial Intelligence (AI)-enabled cyber-defence techniques for smart airports, which will address the challenges brought about by the incorporation of IoT systems to the airport business processes, and the constantly evolving nature of contemporary cyber-attacks. In this study, we present a holistic review of existing smart airport applications and services enabled by IoT sensors and systems. Additionally, we investigate several types of cyber defence tools including AI and data mining techniques, and analyse their strengths and weaknesses in the context of smart airports. Furthermore, we provide a classification of smart airport sub-systems based on their purpose and criticality and address cyber threats that can affect the security of smart airport\u27s networks

    Low light energy autonomous LoRaWAN node

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A LoRaWAN node powered using an 8 cm2 solar cell was designed and its low light harvesting performance evaluated. The embedded system is used to sense some parameters and transmit the results every 10 minutes, using the spreading factor SF7BW125 and transmitting with + 8 dBm, which allows the coverage of a small building. The node can cold start with less than 30 lux. Once started, its operations can be sustained down to 20 lux. Operation at higher spreading factors or higher RF output power is also possible if the transmission interval is increased. Such a performance enables the use of energy autonomous LPWAN nodes in poorly lit environments. The small size of the solar cell makes it possible to build small nodes

    Low-Cost Inventions and Patents

    Get PDF
    Inventions have led to the technological advances of mankind. There are inventions of all kinds, some of which have lasted hundreds of years or even longer. Low-cost technologies are expected to be easy to build, have little or no energy consumption, and be easy to maintain and operate. The use of sustainable technologies is essential in order to move towards a greater global coverage of technology, and therefore to improve human quality of life. Low-cost products always respond to a specific need, even if no in-depth analysis of the situation or possible solutions has been carried out. It is a consensus in all industrialized countries that patents have a decisive influence on the organization of the economy, as they are a key element in promoting technological innovation. Patents must aim to promote the technological development of countries, starting from their industrial situations

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions
    • …
    corecore