8,777 research outputs found

    Interaction Systems and 1-safe Petri Nets

    Full text link
    Interaction systems are a formal model for component-based systems, where components are combined via connectors to form more complex systems. We compare interaction systems (IS) to the wellstudied model of 1-safe Petri nets (1SN) by giving a translation map1: 1SN → IS and a translation map2: IS → 1SN, so that a 1-safe Petri net (an interaction system) and its according interaction system (1-safe Petri net) defined by the respective mapping are isomorphic up to some label relation R. So in some sense both models share the same expressiveness. Also, the encoding map1 is polynomial and can be used to reduce the problems of reachability, deadlock and liveness in 1SN to the problems of reachability, deadlock and liveness in IS, yielding PSPACE-hardness for these questions

    MINDtouch embodied ephemeral transference: Mobile media performance research

    Get PDF
    This is the post-print version of the final published article that is available from the link below. Copyright @ Intellect Ltd 2011.The aim of the author's media art research has been to uncover any new understandings of the sensations of liveness and presence that may emerge in participatory networked performance, using mobile phones and physiological wearable devices. To practically investigate these concepts, a mobile media performance series was created, called MINDtouch. The MINDtouch project proposed that the mobile videophone become a new way to communicate non-verbally, visually and sensually across space. It explored notions of ephemeral transference, distance collaboration and participant as performer to study presence and liveness emerging from the use of wireless mobile technologies within real-time, mobile performance contexts. Through participation by in-person and remote interactors, creating mobile video-streamed mixes, the project interweaves and embodies a daisy chain of technologies through the network space. As part of a practice-based Ph.D. research conducted at the SMARTlab Digital Media Institute at the University of East London, MINDtouch has been under the direction of Professor Lizbeth Goodman and sponsored by BBC R&D. The aim of this article is to discuss the project research, conducted and recently completed for submission, in terms of the technical and aesthetic developments from 2008 to present, as well as the final phase of staging the events from July 2009 to February 2010. This piece builds on the article (Baker 2008) which focused on the outcomes of phase 1 of the research project and initial developments in phase 2. The outcomes from phase 2 and 3 of the project are discussed in this article

    An ontology for software component matching

    Get PDF
    Matching is a central activity in the discovery and assembly of reusable software components. We investigate how ontology technologies can be utilised to support software component development. We use description logics, which underlie Semantic Web ontology languages such as OWL, to develop an ontology for matching requested and provided components. A link between modal logic and description logics will prove invaluable for the provision of reasoning support for component behaviour

    A customizable multi-agent system for distributed data mining

    Get PDF
    We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances

    A Wireless Future: performance art, interaction and the brain-computer interfaces

    Get PDF
    Although the use of Brain-Computer Interfaces (BCIs) in the arts originates in the 1960s, there is a limited number of known applications in the context of real-time audio-visual and mixed-media performances and accordingly the knowledge base of this area has not been developed sufficiently. Among the reasons are the difficulties and the unknown parameters involved in the design and implementation of the BCIs. However today, with the dissemination of the new wireless devices, the field is rapidly growing and changing. In this frame, we examine a selection of representative works and artists, in comparison to the current scientific evidence. We identify important performative and neuroscientific aspects, issues and challenges. A model of possible interactions between the performers and the audience is discussed and future trends regarding liveness and interconnectivity are suggested
    corecore