58 research outputs found

    CSL model checking of Deterministic and Stochastic Petri Nets

    Get PDF
    Deterministic and Stochastic Petri Nets (DSPNs) are a widely used high-level formalism for modeling discrete-event systems where events may occur either without consuming time, after a deterministic time, or after an exponentially distributed time. The underlying process dened by DSPNs, under certain restrictions, corresponds to a class of Markov Regenerative Stochastic Processes (MRGP). In this paper, we investigate the use of CSL (Continuous Stochastic Logic) to express probabilistic properties, such a time-bounded until and time-bounded next, at the DSPN level. The verication of such properties requires the solution of the steady-state and transient probabilities of the underlying MRGP. We also address a number of semantic issues regarding the application of CSL on MRGP and provide numerical model checking algorithms for this logic. A prototype model checker, based on SPNica, is also described

    Embedded Systems Requirements Verification Using HiLeS Designer

    Get PDF
    International audienceOne of the issues related to systems design is the early verification in first design steps: system specifications verification. Nowadays, it is common to use text-based specifications to begin a system design. However, these specifications cannot be verified until a software model is made. In this work, we show how can we use HiLeS Designer to model and verify, formally and by simulation an embedded system specification. This tool makes easier to build the model, using graphical concepts which are familiar to designers. It also helps to verify formally the structure and some logical behavior, and by simulation, it is possible to verify the consistence of the embedded system specification. We model and verify System Display Selector Requirements applying HiLeS Designer

    An Executable System Architecture Approach to Discrete Events System Modeling Using SysML in Conjunction with Colored Petri Net

    Get PDF
    This paper proposes an executable system architecting paradigm for discrete event system modeling and analysis through integration of a set of architecting tools, executable modeling tools, analytical tools, and visualization tools. The essential step is translating SysML-based specifications into colored Petri nets (CPNs) which enables rigorous static and dynamic system analysis as well as formal verification of the behavior and functionality of the SysML-based design. A set of tools have been studied and integrated that enable a structured architecture design process. Some basic principles of executable system architecture for discrete event system modeling that guide the process of executable architecture specification and analysis are discussed. This paradigm is aimed at general system design. Its feasibility was demonstrated with a C4- type network centric system as an example. The simulation results was used to check the overall integrity and internal consistency of the architecture models, refine the architecture design, and, finally, verify the behavior and functionality of the system being modeled

    A petri-net based methodology for modeling, simulation, and control of flexible manufacturing systems

    Get PDF
    Global competition has made it necessary for manufacturers to introduce such advanced technologies as flexible and agile manufacturing, intelligent automation, and computer-integrated manufacturing. However, the application extent of these technologies varies from industry to industry and has met various degrees of success. One critical barrier leading to successful implementation of advanced manufacturing systems is the ever-increasing complexity in their modeling, analysis, simulation, and control. The purpose of this work is to introduce a set of Petri net-based tools and methods to address a variety of problems associated with the design and implementation of flexible manufacturing systems (FMSs). More specifically, this work proposes Petri nets as an integrated tool for modeling, simulation, and control of flexible manufacturing systems (FMSs). The contributions of this work are multifold. First, it demonstrates a new application of PNs for simulation by evaluating the performance of pull and push diagrams in manufacturing systems. Second, it introduces a class of PNs, Augmented-timed Petri nets (ATPNs) in order to increase the power of PNs to simulate and control flexible systems with breakdowns. Third, it proposes a new class of PNs called Realtime Petri nets (RTPNs) for discrete event control of FMS s. The detailed comparison between RTPNs and traditional discrete event methods such as ladder logic diagrams is presented to answer the basic question \u27Why is a PN better tool than ladder logic diagram?\u27 and to justify the PN method. Also, a conversion procedure that automatically generates PN models from a given class of logic control specifications is presented. Finally, a methodology that uses PNs for the development of object-oriented control software is proposed. The present work extends the PN state-of-the-art in two ways. First, it offers a wide scope for engineers and managers who are responsible for the design and the implementation of modem manufacturing systems to evaluate Petri nets for applications in their work. Second, it further develops Petri net-based methods for discrete event control of manufacturing systems

    A System for Deduction-based Formal Verification of Workflow-oriented Software Models

    Full text link
    The work concerns formal verification of workflow-oriented software models using deductive approach. The formal correctness of a model's behaviour is considered. Manually building logical specifications, which are considered as a set of temporal logic formulas, seems to be the significant obstacle for an inexperienced user when applying the deductive approach. A system, and its architecture, for the deduction-based verification of workflow-oriented models is proposed. The process of inference is based on the semantic tableaux method which has some advantages when compared to traditional deduction strategies. The algorithm for an automatic generation of logical specifications is proposed. The generation procedure is based on the predefined workflow patterns for BPMN, which is a standard and dominant notation for the modeling of business processes. The main idea for the approach is to consider patterns, defined in terms of temporal logic,as a kind of (logical) primitives which enable the transformation of models to temporal logic formulas constituting a logical specification. Automation of the generation process is crucial for bridging the gap between intuitiveness of the deductive reasoning and the difficulty of its practical application in the case when logical specifications are built manually. This approach has gone some way towards supporting, hopefully enhancing our understanding of, the deduction-based formal verification of workflow-oriented models.Comment: International Journal of Applied Mathematics and Computer Scienc

    State/event net equivalance

    Get PDF

    Symbolic Computation of Nonblocking Control Function for Timed Discrete Event Systems

    Get PDF
    In this paper, we symbolically compute a minimally restrictive nonblocking supervisor for timed discrete event systems, in the supervisory control theory context. The method is based on Timed Extended Finite Automata, which is an augmentation of extended finite automata (EFAs) by incorporating discrete time into the model. EFAs are ordinary automaton extended with discrete variables, guard expressions and action functions. To tackle large problems all computations are based on binary decision diagrams (BDDs). The main feature of this approach is that the BDD-based fixed-point computations is not based on “tick” models that have been commonly used in this area, leading to better performance in many cases. As a case study, we effectively computed the minimally restrictive nonblocking supervisor for a well-known production cell

    What Petri Net Obliges Us to Say: Comparing Approaches for Behavior Composition

    Full text link
    We identify and demonstrate a weakness of Petri Nets (PN) in specifying composite behavior of reactive systems. Specifically, we show how, when specifying multiple requirements in one PN model, modelers are obliged to specify mechanisms for combining these requirements. This yields, in many cases, over-specification and incorrect models. We demonstrate how some execution paths are missed, and some are generated unintentionally. To support this claim, we analyze PN models from the literature, identify the combination mechanisms, and demonstrate their effect on the correctness of the model. To address this problem, we propose to model the system behavior using behavioral programming (BP), a software development and modeling paradigm designed for seamless integration of independent requirements. Specifically, we demonstrate how the semantics of BP, which define how to interweave scenarios into a single model, allow avoiding the over-specification. Additionally, while BP maintains the same mathematical properties as PN, it provides means for changing the model dynamically, thus increasing the agility of the specification. We compare BP and PN in quantitative and qualitative measures by analyzing the models, their generated execution paths, and the specification process. Finally, while BP is supported by tools that allow for applying formal methods and reasoning techniques to the model, it lacks the legacy of PN tools and algorithms. To address this issue, we propose semantics and a tool for translating BP models to PN and vice versa.Comment: 14 pages, 10 figures, Published in IEEE Transactions on Software Engineering (IEEE TSE
    corecore