10,624 research outputs found

    Towards a Common Language of Infrastructure Interdependency

    Get PDF
    Infrastructure systems can exist interdependently with one another either by design, necessity or evolution. There is evidence that interdependencies can be the source of emergent benefits and hazards, and therefore there is value in their identification and management. Achieving this requires collaboration and communication between infrastructure stakeholders across all relevant sectors. Recognising, developing and sharing multiple understandings of infrastructure interdependency and dependency will facilitate a wide range of multi-disciplinary and cross-sectorial work and support productive stakeholder dialogues. This paper therefore aims to initiate discussion around the nature of infrastructure interdependency and dependency in order to establish the basis of a useful, coherent and complete conceptual taxonomy. It sets out an approach for locating this taxonomy and language within a framework of commonplace stakeholder viewpoints. The paper looks at the potential structural arrangements of infrastructure interdependencies before exploring the qualitative ways in which the relationships can be characterised. This builds on the existing body of knowledge as well as experience through case studies in developing an Interdependency Planning and Management Framework for Infrastructure

    Critical Infrastructure Protection Approaches: Analytical Outlook on Capacity Responsiveness to Dynamic Trends

    Get PDF
    Overview: Critical infrastructures (CIs) – any asset with a functionality that is critical to normal societal functions, safety, security, economic or social wellbeing of people, and disruption or destruction of which would have a very significant negative societal impact. CIs are clearly central to the normal functioning of a nation’s economy and require to be protected from both intentional and unintentional sabotages. It is important to correctly discern and aptly manage security risks within CI domains. The protection (security) of CIs and their networks can provide clear benefits to owner organizations and nations including: enabling the attainment of a properly functioning social environment and economic market, improving service security, enabling integration to external markets, and enabling service recipients (consumers, clients, and users) to benefit from new and emerging technological developments. To effectively secure CI system, firstly, it is crucial to understand three things - what can happen, how likely it is to happen, and the consequences of such happenings. One way to achieve this is through modelling and simulations of CI attributes, functionalities, operations, and behaviours to support security analysis perspectives, and especially considering the dynamics in trends and technological adoptions. Despite the availability of several security-related CI modelling approaches (tools and techniques), trends such as inter-networking, internet and IoT integrations raise new issues. Part of the issues relate to how to effectively (more precisely and realistically) model the complex behavior of interconnected CIs and their protection as system of systems (SoS). This report attempts to address the broad goal around this issue by reviewing a sample of critical infrastructure protection approaches; comprising tools, techniques, and frameworks (methodologies). The analysis covers contexts relating to the types of critical infrastructures, applicable modelling techniques, risk management scope covered, considerations for resilience, interdependency, and policy and regulations factors. Key Findings: This research presents the following key findings: 1. There is not a single specific Critical Infrastructure Protection (CIP) approach – tool, technique, methodology or framework – that exists or emerges as a ‘fit-for-all’; to allow the modelling and simulation of cyber security risks, resilience, dependency, and impact attributes in all critical infrastructure set-ups. 2. Typically, two or more modelling techniques can be (need to be) merged to cover a broader scope and context of modelling and simulation applications (areas) to achieve desirable highlevel protection and security for critical infrastructures. 3. Empirical-based, network-based, agent-based, and system dynamics-based modelling techniques are more widely used, and all offer gains for their use. 4. The deciding factors for choosing modelling techniques often rest on; complexity of use, popularity of approach, types and objectives of user Organisation and sector. 5. The scope of modelling functions and operations also help to strike the balance between ‘specificity’ and ‘generality’ of modelling technique and approach for the gains of in-depth analysis and wider coverage respectively. 6. Interdependency and resilience modelling and simulations in critical infrastructure operations, as well as associated security and safety risks; are crucial characteristics that need to be considered and explored in revising existing or developing new CIP modelling approaches. Recommendations: Key recommendations from this research include: 1. Other critical infrastructure sectors such as emergency services, food & agriculture, and dams; need to draw lessons from the energy and transportation sectors for the successive benefits of: i. Amplifying the drive and efforts towards evaluating and understanding security risks to their infrastructure and operations. ii. Support better understanding of any associated dependencies and cascading impacts. iii. Learning how to establish effective security and resilience. iv. Support the decision-making process linked with measuring the effectiveness of preparedness activities and investments. v. Improve the behavioural security-related responses of CI to disturbances or disruptions. 2. Security-related critical infrastructure modelling approaches should be developed or revised to include wider scopes of security risk management – from identification to effectiveness evaluations, to support: i. Appropriate alignment and responsiveness to the dynamic trends introduced by new technologies such as IoT and IIoT. ii. Dynamic security risk management – especially the assessment section needs to be more dynamic than static, to address the recurrent and impactful risks that emerge in critical infrastructures

    Climate Mitigation and Adaptation Strategies for Roofs and Pavements. A Case Study at Sapienza University Campus

    Get PDF
    The progressively emerging concept of urban resilience to climate change highlights the importance of mitigation and adaptation measures, and the need to integrate urban climatology in the design process, in order to better understand the multiple effects of combined green and cool technologies for the transition to climate responsive and thermally comfortable urban open spaces. This study focuses the attention on selected mitigation and adaptation technologies; two renovation scenarios were designed and modeled according to the minimal intervention criterion. The study pays attention to the effect on surface temperature and physiological equivalent temperature (PET) of vegetation and high albedo materials characterizing the horizontal boundaries of the site. The Sapienza University campus, a historical site in Rome, is taken as a case study. These results highlight the importance of treed open spaces and the combination of permeable green pavements associated with cool roofs as the most effective strategy for the mitigation of summer heatwaves and the improvement of outdoor thermal comfort

    Disaster management in smart cities

    Get PDF
    The smart city concept, in which data from different systems are available, contains a multitude of critical infrastructures. This data availability opens new research opportunities in the study of the interdependency between those critical infrastructures and cascading effects solutions and focuses on the smart city as a network of critical infrastructures. This paper proposes an integrated resilience system linking interconnected critical infrastructures in a smart city to improve disaster resilience. A data-driven approach is considered, using artificial intelligence and methods to minimize cascading effects and the destruction of failing critical infrastructures and their components (at a city level). The proposed approach allows rapid recovery of infrastructures’ service performance levels after disasters while keeping the coverage of the assessment of risks, prevention, detection, response, and mitigation of consequences. The proposed approach has the originality and the practical implication of providing a decision support system that handles the infrastructures that will support the city disaster management system—make the city prepare, adapt, absorb, respond, and recover from disasters by taking advantage of the interconnections between its various critical infrastructures to increase the overall resilience capacity. The city of Lisbon (Portugal) is used as a case to show the practical application of the approach.info:eu-repo/semantics/publishedVersio

    Unifying Assessments of Sustainability and Resilience in Civil Infrastructure Systems: The Case of Masonry Structures

    Get PDF
    Review of existing literature on the unification of sustainability and resilience showed the lack of a single effective framework that can unify the two, especially for building systems. Along this line of research, this study contributes a novel experimental framework to assess masonry structures and support a unified approach. This study performed structural analysis for resilience assessment and energy simulation for sustainability assessment. Based on the openings available in masonry walls, the study observed the changes in sustainability indicators (electricity consumption). Changes in resilience indicators (story drifts) were also observed. Results indicate that overall sustainability is compromised with additional openings in most cases. However, in most cases, electricity consumption for space heating decreases with additional openings. Results from resilience assessment show an increase in story drift of different floors with additional openings. Such results indicate that with additional openings, an unreinforced masonry building becomes more vulnerable to the damages from the earthquake lateral loads. Moreover, differential effects (positive/negative correlations) were observed when concurrent assessments were made on sustainability and resilience indicators

    Analysis of Bulk Power System Resilience Using Vulnerability Graph

    Get PDF
    Critical infrastructure such as a Bulk Power System (BPS) should have some quantifiable measure of resiliency and definite rule-sets to achieve a certain resilience value. Industrial Control System (ICS) and Supervisory Control and Data Acquisition (SCADA) networks are integral parts of BPS. BPS or ICS are themselves not vulnerable because of their proprietary technology, but when the control network and the corporate network need to have communications for performance measurements and reporting, the ICS or BPS become vulnerable to cyber-attacks. Thus, a systematic way of quantifying resiliency and identifying crucial nodes in the network is critical for addressing the cyber resiliency measurement process. This can help security analysts and power system operators in the decision-making process. This thesis focuses on the resilience analysis of BPS and proposes a ranking algorithm to identify critical nodes in the network. Although there are some ranking algorithms already in place, but they lack comprehensive inclusion of the factors that are critical in the cyber domain. This thesis has analyzed a range of factors which are critical from the point of view of cyber-attacks and come up with a MADM (Multi-Attribute Decision Making) based ranking method. The node ranking process will not only help improve the resilience but also facilitate hardening the network from vulnerabilities and threats. The proposed method is called MVNRank which stands for Multiple Vulnerability Node Rank. MVNRank algorithm takes into account the asset value of the hosts, the exploitability and impact scores of vulnerabilities as quantified by CVSS (Common Vulnerability Scoring System). It also considers the total number of vulnerabilities and severity level of each vulnerability, degree centrality of the nodes in vulnerability graph and the attacker’s distance from the target node. We are using a multi-layered directed acyclic graph (DAG) model and ranking the critical nodes in the corporate and control network which falls in the paths to the target ICS. We don\u27t rank the ICS nodes but use them to calculate the potential power loss capability of the control center nodes using the assumed ICS connectivity to BPS. Unlike most of the works, we have considered multiple vulnerabilities for each node in the network while generating the rank by using a weighted average method. The resilience computation is highly time consuming as it considers all the possible attack paths from the source to the target node which increases in a multiplicative manner based on the number of nodes and vulnerabilities. Thus, one of the goals of this thesis is to reduce the simulation time to compute resilience which is achieved as illustrated in the simulation results

    ENERGY RESILIENCE IMPACT OF SUPPLY CHAIN NETWORK DISRUPTION TO MILITARY MICROGRIDS

    Get PDF
    The ability to provide uninterrupted power to military installations is paramount in executing a country's national defense strategy. Microgrid architectures increase installation energy resilience through redundant local generation sources and the capability for grid independence. However, deliberate attacks from near-peer competitors can disrupt the associated supply chain network, thereby affecting mission-critical loads. Utilizing an integrated discrete-time Markov chain and dynamic Bayesian network approach, we investigate disruption propagation throughout a supply chain network and quantify its mission impact on an islanded microgrid. We propose a novel methodology and an associated metric we term "energy resilience impact" to identify and address supply-chain disruption risks to energy security. A case study of a fictional military installation is presented to demonstrate how installation energy managers can adopt this methodology for the design and improvement of military microgrids.Outstanding ThesisLieutenant, United States NavyApproved for public release. Distribution is unlimited
    • …
    corecore