2,814 research outputs found

    Microphone Array Speech Enhancement Via Beamforming Based Deep Learning Network

    Get PDF
    In general, in-car speech enhancement is an application of the microphone array speech enhancement in particular acoustic environments. Speech enhancement inside the moving cars is always an interesting topic and the researchers work to create some modules to increase the quality of speech and intelligibility of speech in cars. The passenger dialogue inside the car, the sound of other equipment, and a wide range of interference effects are major challenges in the task of speech separation in-car environment. To overcome this issue, a novel Beamforming based Deep learning Network (Bf-DLN) has been proposed for speech enhancement. Initially, the captured microphone array signals are pre-processed using an Adaptive beamforming technique named Least Constrained Minimum Variance (LCMV). Consequently, the proposed method uses a time-frequency representation to transform the pre-processed data into an image. The smoothed pseudo-Wigner-Ville distribution (SPWVD) is used for converting time-domain speech inputs into images. Convolutional deep belief network (CDBN) is used to extract the most pertinent features from these transformed images. Enhanced Elephant Heard Algorithm (EEHA) is used for selecting the desired source by eliminating the interference source. The experimental result demonstrates the effectiveness of the proposed strategy in removing background noise from the original speech signal. The proposed strategy outperforms existing methods in terms of PESQ, STOI, SSNRI, and SNR. The PESQ of the proposed Bf-DLN has a maximum PESQ of 1.98, whereas existing models like Two-stage Bi-LSTM has 1.82, DNN-C has 1.75 and GCN has 1.68 respectively. The PESQ of the proposed method is 1.75%, 3.15%, and 4.22% better than the existing GCN, DNN-C, and Bi-LSTM techniques. The efficacy of the proposed method is then validated by experiments

    Deep Complex U-Net with Conformer for Audio-Visual Speech Enhancement

    Full text link
    Recent studies have increasingly acknowledged the advantages of incorporating visual data into speech enhancement (SE) systems. In this paper, we introduce a novel audio-visual SE approach, termed DCUC-Net (deep complex U-Net with conformer network). The proposed DCUC-Net leverages complex domain features and a stack of conformer blocks. The encoder and decoder of DCUC-Net are designed using a complex U-Net-based framework. The audio and visual signals are processed using a complex encoder and a ResNet-18 model, respectively. These processed signals are then fused using the conformer blocks and transformed into enhanced speech waveforms via a complex decoder. The conformer blocks consist of a combination of self-attention mechanisms and convolutional operations, enabling DCUC-Net to effectively capture both global and local audio-visual dependencies. Our experimental results demonstrate the effectiveness of DCUC-Net, as it outperforms the baseline model from the COG-MHEAR AVSE Challenge 2023 by a notable margin of 0.14 in terms of PESQ. Additionally, the proposed DCUC-Net performs comparably to a state-of-the-art model and outperforms all other compared models on the Taiwan Mandarin speech with video (TMSV) dataset

    Audio-Visual Speech Separation in Noisy Environments with a Lightweight Iterative Model

    Full text link
    We propose Audio-Visual Lightweight ITerative model (AVLIT), an effective and lightweight neural network that uses Progressive Learning (PL) to perform audio-visual speech separation in noisy environments. To this end, we adopt the Asynchronous Fully Recurrent Convolutional Neural Network (A-FRCNN), which has shown successful results in audio-only speech separation. Our architecture consists of an audio branch and a video branch, with iterative A-FRCNN blocks sharing weights for each modality. We evaluated our model in a controlled environment using the NTCD-TIMIT dataset and in-the-wild using a synthetic dataset that combines LRS3 and WHAM!. The experiments demonstrate the superiority of our model in both settings with respect to various audio-only and audio-visual baselines. Furthermore, the reduced footprint of our model makes it suitable for low resource applications.Comment: Accepted by Interspeech 202

    Cross-Attention is all you need: Real-Time Streaming Transformers for Personalised Speech Enhancement

    Full text link
    Personalised speech enhancement (PSE), which extracts only the speech of a target user and removes everything else from a recorded audio clip, can potentially improve users' experiences of audio AI modules deployed in the wild. To support a large variety of downstream audio tasks, such as real-time ASR and audio-call enhancement, a PSE solution should operate in a streaming mode, i.e., input audio cleaning should happen in real-time with a small latency and real-time factor. Personalisation is typically achieved by extracting a target speaker's voice profile from an enrolment audio, in the form of a static embedding vector, and then using it to condition the output of a PSE model. However, a fixed target speaker embedding may not be optimal under all conditions. In this work, we present a streaming Transformer-based PSE model and propose a novel cross-attention approach that gives adaptive target speaker representations. We present extensive experiments and show that our proposed cross-attention approach outperforms competitive baselines consistently, even when our model is only approximately half the size

    A Hybrid Continuity Loss to Reduce Over-Suppression for Time-domain Target Speaker Extraction

    Full text link
    Speaker extraction algorithm extracts the target speech from a mixture speech containing interference speech and background noise. The extraction process sometimes over-suppresses the extracted target speech, which not only creates artifacts during listening but also harms the performance of downstream automatic speech recognition algorithms. We propose a hybrid continuity loss function for time-domain speaker extraction algorithms to settle the over-suppression problem. On top of the waveform-level loss used for superior signal quality, i.e., SI-SDR, we introduce a multi-resolution delta spectrum loss in the frequency-domain, to ensure the continuity of an extracted speech signal, thus alleviating the over-suppression. We examine the hybrid continuity loss function using a time-domain audio-visual speaker extraction algorithm on the YouTube LRS2-BBC dataset. Experimental results show that the proposed loss function reduces the over-suppression and improves the word error rate of speech recognition on both clean and noisy two-speakers mixtures, without harming the reconstructed speech quality.Comment: Submitted to Interspeech202
    corecore