1,254 research outputs found

    โ€œVisoryโ€ Mobile Application for the Visually Impaired

    Get PDF
    Unquestionably, visual impairment severely affects the quality of life and has an impact on many daily activities of the visually impaired individuals. Visory is a mobile application that aims to assist the visually impaired individuals with visual support, through human and automated visual support. Mobile phones are a norm; thus, solutions need to be created to assist the visually impaired while lessening the chances of discrimination against these individuals. With the help of volunteers, who opt to spend their valuable time helping others, the visually impaired individuals are able to connect via video calling and inquire for visual assistance using their device camera. Visory is also equipped with three vision APIs to ease further the life of these individuals, which includes object detection, text, and image recognition. Considering the limited time and budget of the project, Agile methodology is utilized to ensure the successful development of each of the modules within the stipulated deadline. Wide range of extensive testing techniques ensured minimal crashes, and uncovered bugs rectified. Ultimately, the objectives of the project were achieved. However, there is still room for improvement that needs to be addressed in future development for further stability and performance

    ํ˜„์žฅ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋Šฅ๋ ฅ์„ ํ™•์žฅํ•˜๊ธฐ ์œ„ํ•œ ์ž์œ ๋„ ๋†’์€ ์…€ํ”„ ํŠธ๋ž˜ํ‚น ๊ธฐ์ˆ ์˜ ๋””์ž์ธ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์„œ์ง„์šฑ.Collecting and tracking data in everyday contexts is a common practice for both individual self-trackers and researchers. The increase in wearable and mobile technologies for self-tracking encourages people to gain personal insights from the data about themselves. Also, researchers exploit self-tracking to gather data in situ or to foster behavioral change. Despite a diverse set of available tracking tools, however, it is still challenging to find ones that suit unique tracking needs, preferences, and commitments. Individual self-tracking practices are constrained by the tracking tools' initial design, because it is difficult to modify, extend, or mash up existing tools. Limited tool support also impedes researchers' efforts to conduct in situ data collection studies. Many researchers still build their own study instruments due to the mismatch between their research goals and the capabilities of existing toolkits. The goal of this dissertation is to design flexible self-tracking technologies that are generative and adaptive to cover diverse tracking contexts, ranging from personal tracking to research contexts. Specifically, this dissertation proposes OmniTrack, a flexible self-tracking approach leveraging a semi-automated tracking concept that combines manual and automated tracking methods to generate an arbitrary tracker design. OmniTrack was implemented as a mobile app for individuals. The OmniTrack app enables self-trackers to construct their own trackers and customize tracking items to meet their individual needs. A usability study and a field development study were conducted with the goal of assessing how people adopt and adapt OmniTrack to fulfill their needs. The studies revealed that participants actively used OmniTrack to create, revise, and appropriate trackers, ranging from a simple mood tracker to a sophisticated daily activity tracker with multiple fields. Furthermore, OmniTrack was extended to cover research contexts that enclose manifold personal tracking contexts. As part of the research, this dissertation presents OmniTrack Research Kit, a research platform that allows researchers without programming expertise to configure and conduct in situ data collection studies by deploying the OmniTrack app on participants' smartphones. A case study in deploying the research kit for conducting a diary study demonstrated how OmniTrack Research Kit could support researchers who manage study participants' self-tracking process. This work makes artifacts contributions to the fields of human-computer interaction and ubiquitous computing, as well as expanding empirical understanding of how flexible self-tracking tools can enhance the practices of individual self-trackers and researchers. Moreover, this dissertation discusses design challenges for flexible self-tracking technologies, opportunities for further improving the proposed systems, and future research agenda for reaching the audiences not covered in this research.์ผ์ƒ์˜ ๋งฅ๋ฝ์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์œผ๋Š” ํ™œ๋™์ธ ์…€ํ”„ ํŠธ๋ž˜ํ‚น(self-tracking)์€ ๊ฐœ์ธ๊ณผ ์—ฐ๊ตฌ์˜ ์˜์—ญ์—์„œ ํ™œ๋ฐœํžˆ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์›จ์–ด๋Ÿฌ๋ธ” ๋””๋ฐ”์ด์Šค์™€ ๋ชจ๋ฐ”์ผ ๊ธฐ์ˆ ์˜ ๋ฐœ๋‹ฌ๋กœ ์ธํ•ด ์‚ฌ๋žŒ๋“ค์€ ๊ฐ์ž์˜ ์‚ถ์— ๋Œ€ํ•ด ๋งํ•ด์ฃผ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋” ์‰ฝ๊ฒŒ ์ˆ˜์ง‘ํ•˜๊ณ , ํ†ต์ฐฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์—ฐ๊ตฌ์ž๋“ค์€ ํ˜„์žฅ(in situ) ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ฑฐ๋‚˜ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ํ–‰๋™ ๋ณ€ํ™”๋ฅผ ์ผ์œผํ‚ค๋Š” ๋ฐ์— ์…€ํ”„ ํŠธ๋ž˜ํ‚น์„ ํ™œ์šฉํ•œ๋‹ค. ๋น„๋ก ์…€ํ”„ ํŠธ๋ž˜ํ‚น์„ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ๋„๊ตฌ๋“ค์ด ์กด์žฌํ•˜์ง€๋งŒ, ํŠธ๋ž˜ํ‚น์— ๋Œ€ํ•ด ๋‹ค์–‘ํ™”๋œ ์š”๊ตฌ์™€ ์ทจํ–ฅ์„ ์™„๋ฒฝํžˆ ์ถฉ์กฑํ•˜๋Š” ๊ฒƒ๋“ค์„ ์ฐพ๋Š” ๊ฒƒ์€ ์‰ฝ์ง€ ์•Š๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ์…€ํ”„ ํŠธ๋ž˜ํ‚น ๋„๊ตฌ๋Š” ์ด๋ฏธ ์„ค๊ณ„๋œ ๋ถ€๋ถ„์„ ์ˆ˜์ •ํ•˜๊ฑฐ๋‚˜ ํ™•์žฅํ•˜๊ธฐ์— ์ œํ•œ์ ์ด๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌ๋žŒ๋“ค์˜ ์…€ํ”„ ํŠธ๋ž˜ํ‚น์— ๋Œ€ํ•œ ์ž์œ ๋„๋Š” ๊ธฐ์กด ๋„๊ตฌ๋“ค์˜ ๋””์ž์ธ ๊ณต๊ฐ„์— ์˜ํ•ด ์ œ์•ฝ์„ ๋ฐ›์„ ์ˆ˜๋ฐ–์— ์—†๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ, ํ˜„์žฅ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ์—ฐ๊ตฌ์ž๋“ค๋„ ์ด๋Ÿฌํ•œ ๋„๊ตฌ์˜ ํ•œ๊ณ„๋กœ ์ธํ•ด ์—ฌ๋Ÿฌ ๋ฌธ์ œ์— ๋ด‰์ฐฉํ•œ๋‹ค. ์—ฐ๊ตฌ์ž๋“ค์ด ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ๋‹ตํ•˜๊ณ ์ž ํ•˜๋Š” ์—ฐ๊ตฌ ์งˆ๋ฌธ(research question)์€ ๋ถ„์•ผ๊ฐ€ ๋ฐœ์ „ํ• ์ˆ˜๋ก ์„ธ๋ถ„๋˜๊ณ , ์น˜๋ฐ€ํ•ด์ง€๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋ณต์žกํ•˜๊ณ  ๊ณ ์œ ํ•œ ์‹คํ—˜ ์„ค๊ณ„๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ํ•˜์ง€๋งŒ ํ˜„์กดํ•˜๋Š” ์—ฐ๊ตฌ์šฉ ์…€ํ”„ ํŠธ๋ž˜ํ‚น ํ”Œ๋žซํผ๋“ค์€ ์ด์— ๋ถ€ํ•ฉํ•˜๋Š” ์ž์œ ๋„๋ฅผ ๋ฐœํœ˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ„๊ทน์œผ๋กœ ์ธํ•ด ๋งŽ์€ ์—ฐ๊ตฌ์ž๋“ค์ด ๊ฐ์ž์˜ ํ˜„์žฅ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ์—ฐ๊ตฌ์— ํ•„์š”ํ•œ ๋””์ง€ํ„ธ ๋„๊ตฌ๋“ค์„ ์ง์ ‘ ๊ตฌํ˜„ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉํ‘œ๋Š” ์ž์œ ๋„ ๋†’์€---์—ฐ๊ตฌ์  ๋งฅ๋ฝ๊ณผ ๊ฐœ์ธ์  ๋งฅ๋ฝ์„ ์•„์šฐ๋ฅด๋Š” ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š”---์…€ํ”„ ํŠธ๋ž˜ํ‚น ๊ธฐ์ˆ ์„ ๋””์ž์ธํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋ณธ๊ณ ์—์„œ๋Š” ์˜ด๋‹ˆํŠธ๋ž™(OmniTrack)์ด๋ผ๋Š” ๋””์ž์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์˜ด๋‹ˆํŠธ๋ž™์€ ์ž์œ ๋„ ๋†’์€ ์…€ํ”„ ํŠธ๋ž˜ํ‚น์„ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์ด๋ฉฐ, ๋ฐ˜์ž๋™ ํŠธ๋ž˜ํ‚น(semi-automated tracking)์ด๋ผ๋Š” ์ปจ์…‰์„ ๋ฐ”ํƒ•์œผ๋กœ ์ˆ˜๋™ ๋ฐฉ์‹๊ณผ ์ž๋™ ๋ฐฉ์‹์˜ ์กฐํ•ฉ์„ ํ†ตํ•ด ์ž„์˜์˜ ํŠธ๋ž˜์ปค๋ฅผ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋จผ์ € ์˜ด๋‹ˆํŠธ๋ž™์„ ๊ฐœ์ธ์„ ์œ„ํ•œ ๋ชจ๋ฐ”์ผ ์•ฑ ํ˜•ํƒœ๋กœ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์˜ด๋‹ˆํŠธ๋ž™ ์•ฑ์€ ๊ฐœ๊ฐœ์ธ์ด ์ž์‹ ์˜ ํŠธ๋ž˜ํ‚น ๋‹ˆ์ฆˆ์— ๋งž๋Š” ํŠธ๋ž˜์ปค๋ฅผ ์ปค์Šคํ„ฐ๋งˆ์ด์ง•ํ•˜์—ฌ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ๋ณธ๊ณ ์—์„œ๋Š” ์‚ฌ๋žŒ๋“ค์ด ์–ด๋–ป๊ฒŒ ์˜ด๋‹ˆํŠธ๋ž™์„ ์ž์‹ ์˜ ๋‹ˆ์ฆˆ์— ๋งž๊ฒŒ ํ™œ์šฉํ•˜๋Š”์ง€ ์•Œ์•„๋ณด๊ณ ์ž ์‚ฌ์šฉ์„ฑ ํ…Œ์ŠคํŠธ(usability testing)์™€ ํ•„๋“œ ๋ฐฐํฌ ์—ฐ๊ตฌ(field deployment study)๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ฐธ๊ฐ€์ž๋“ค์€ ์˜ด๋‹ˆํŠธ๋ž™์„ ํ™œ๋ฐœํžˆ ์ด์šฉํ•ด ๋‹ค์–‘ํ•œ ๋””์ž์ธ์˜ ํŠธ๋ž˜์ปคโ€”์•„์ฃผ ๋‹จ์ˆœํ•œ ๊ฐ์ • ํŠธ๋ž˜์ปค๋ถ€ํ„ฐ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํ•„๋“œ๋ฅผ ๊ฐ€์ง„ ๋ณต์žกํ•œ ์ผ์ผ ํ™œ๋™ ํŠธ๋ž˜์ปค๊นŒ์ง€โ€”๋“ค์„ ์ƒ์„ฑํ•˜๊ณ , ์ˆ˜์ •ํ•˜๊ณ , ํ™œ์šฉํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์˜ด๋‹ˆํŠธ๋ž™์„ ํ˜„์žฅ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ์—ฐ๊ตฌ์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ์—ฐ๊ตฌ ํ”Œ๋žซํผ ํ˜•ํƒœ์˜ '์˜ด๋‹ˆํŠธ๋ž™ ๋ฆฌ์„œ์น˜ ํ‚ท(OmniTrack Research Kit)'์œผ๋กœ ํ™•์žฅํ•˜์˜€๋‹ค. ์˜ด๋‹ˆํŠธ๋ž™ ๋ฆฌ์„œ์น˜ ํ‚ท์€ ์—ฐ๊ตฌ์ž๋“ค์ด ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด ์—†์ด ์›ํ•˜๋Š” ์‹คํ—˜์„ ์„ค๊ณ„ํ•˜๊ณ  ์˜ด๋‹ˆํŠธ๋ž™ ์•ฑ์„ ์ฐธ๊ฐ€์ž๋“ค์˜ ์Šค๋งˆํŠธํฐ์œผ๋กœ ๋ฐฐํฌํ•  ์ˆ˜ ์žˆ๋„๋ก ๋””์ž์ธ๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์˜ด๋‹ˆํŠธ๋ž™ ๋ฆฌ์„œ์น˜ ํ‚ท์„ ์ด์šฉํ•ด ์ผ์ง€๊ธฐ๋ก ์—ฐ๊ตฌ(diary study)๋ฅผ ์ง์ ‘ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์˜ด๋‹ˆํŠธ๋ž™ ์ ‘๊ทผ๋ฒ•์ด ์–ด๋–ป๊ฒŒ ์—ฐ๊ตฌ์ž๋“ค์˜ ์—ฐ๊ตฌ ๋ชฉ์ ์„ ์ด๋ฃจ๋Š” ๋ฐ์— ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ๋Š”์ง€ ์ง์ ‘ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํœด๋จผ-์ปดํ“จํ„ฐ ์ธํ„ฐ๋ž™์…˜(Human-Computer Interaction) ๋ฐ ์œ ๋น„์ฟผํ„ฐ์Šค ์ปดํ“จํŒ…(Ubiquitous Computing) ๋ถ„์•ผ์— ๊ธฐ์ˆ ์  ์‚ฐ์ถœ๋ฌผ๋กœ์จ ๊ธฐ์—ฌํ•˜๋ฉฐ, ์ž์œ ๋„ ๋†’์€ ์…€ํ”„ ํŠธ๋ž˜ํ‚น ๋„๊ตฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ๊ฐœ์ธ๊ณผ ์—ฐ๊ตฌ์ž๋“ค์„ ๋„์šธ ์ˆ˜ ์žˆ๋Š”์ง€ ์‹ค์ฆ์ ์ธ ์ดํ•ด๋ฅผ ์ฆ์ง„ํ•œ๋‹ค. ๋˜ํ•œ, ์ž์œ ๋„ ๋†’์€ ์…€ํ”„ํŠธ๋ž˜ํ‚น ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ๋””์ž์ธ์  ๋‚œ์ œ, ์—ฐ๊ตฌ์—์„œ ์ œ์‹œํ•œ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ฐœ์„ ๋ฐฉ์•ˆ, ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋‹ค๋ฃจ์ง€ ๋ชปํ•œ ๋‹ค๋ฅธ ์ง‘๋‹จ์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋…ผ์ œ์— ๋Œ€ํ•˜์—ฌ ๋…ผ์˜ํ•œ๋‹ค.Abstract CHAPTER 1. Introduction 1.1 Background and Motivation 1.2 Research Questions and Approaches 1.2.1 Designing a Flexible Self-Tracking Approach Leveraging Semiautomated Tracking 1.2.2 Design and Evaluation of OmniTrack in Individual Tracking Contexts 1.2.3 Designing a Research Platform for In Situ Data Collection Studies Leveraging OmniTrack 1.2.4 A Case Study of Conducting an In Situ Data Collection Study using the Research Platform 1.3 Contributions 1.4 Structure of this Dissertation CHAPTER 2. Related Work 2.1 Background on Self-Tracking 2.1.1 Self-Tracking in Personal Tracking Contexts 2.1.2 Utilization of Self-Tracking in Other Contexts 2.2 Barriers Caused by Limited Tool Support 2.2.1 Limited Tools and Siloed Data in Personal Tracking 2.2.2 Challenges of the Instrumentation for In Situ Data Collection 2.3 Flexible Self-Tracking Approaches 2.3.1 Appropriation of Generic Tools 2.3.2 Universal Tracking Systems for Individuals 2.3.3 Research Frameworks for In Situ Data Collection 2.4 Grounding Design Approach: Semi-Automated Tracking 2.5 Summary of Related Work CHAPTER3 DesigningOmniTrack: a Flexible Self-Tracking Approach 3.1 Design Goals and Rationales 3.2 System Design and User Interfaces 3.2.1 Trackers: Enabling Flexible Data Inputs 3.2.2 Services: Integrating External Trackers and Other Services 3.2.3 Triggers: Retrieving Values Automatically 3.2.4 Streamlining Tracking and Lowering the User Burden 3.2.5 Visualization and Feedback 3.3 OmniTrack Use Cases 3.3.1 Tracker 1: Beer Tracker 3.3.2 Tracker 2: SleepTight++ 3.3.3 Tracker 3: Comparison of Automated Trackers 3.4 Summary CHAPTER 4. Understanding HowIndividuals Adopt and Adapt OmniTrack 4.1 Usability Study 4.1.1 Participants 4.1.2 Procedure and Study Setup 4.1.3 Tasks 4.1.4 Results and Discussion 4.1.5 Improvements A_er the Usability Study 4.2 Field Deployment Study 4.2.1 Study Setup 4.2.2 Participants 4.2.3 Data Analysis and Results 4.2.4 Reflections on the Deployment Study 4.3 Discussion 4.3.1 Expanding the Design Space for Self-Tracking 4.3.2 Leveraging Other Building Blocks of Self-Tracking 4.3.3 Sharing Trackers with Other People 4.3.4 Studying with a Broader Audience 4.4 Summary CHAPTER 5. Extending OmniTrack for Supporting In Situ Data Collection Studies 5.1 Design Space of Study Instrumentation for In-Situ Data Collection 5.1.1 Experiment-Level Dimensions 5.1.2 Condition-Level Dimensions 5.1.3 Tracker-Level Dimensions 5.1.4 Reminder/Trigger-Level Dimensions 5.1.5 Extending OmniTrack to Cover the Design Space 5.2 Design Goals and Rationales 5.3 System Design and User Interfaces 5.3.1 Experiment Management and Collaboration 5.3.2 Experiment-level Configurations 5.3.3 A Participants Protocol for Joining the Experiment 5.3.4 Implementation 5.4 Replicated Study Examples 5.4.1 Example A: Revisiting the Deployment Study of OmniTrack 5.4.2 Example B: Exploring the Clinical Applicability of a Mobile Food Logger 5.4.3 Example C: Understanding the Effect of Cues and Positive Reinforcement on Habit Formation 5.4.4 Example D: Collecting Stress and Activity Data for Building a Prediction Model 5.5 Discussion 5.5.1 Supporting Multiphase Experimental Design 5.5.2 Serving as Testbeds for Self-Tracking Interventions 5.5.3 Exploiting the Interaction Logs 5.6 Summary CHAPTER 6. Using the OmniTrack Research Kit: A Case Study 6.1 Study Background and Motivation 6.2 OmniTrack Configuration for Study Instruments 6.3 Participants 6.4 Study Procedure 6.5 Dataset and Analysis 6.6 Study Result 6.6.1 Diary Entries 6.6.2 Aspects of Productivity Evaluation 6.6.3 Productive Activities 6.7 Experimenter Experience of OmniTrack 6.8 Participant Experience of OmniTrack 6.9 Implications 6.9.1 Visualization Support for Progressive, Preliminary Analysis of Collected Data 6.9.2 Inspection to Prevent Misconfiguration 6.9.3 Providing More Alternative Methods to Capture Data 6.10 Summary CHAPTER 7. Discussion 7.1 Lessons Learned 7.2 Design Challenges and Implications 7.2.1 Making the Flexibility Learnable 7.2.2 Additive vs. Subtractive Design for Flexibility 7.3 Future Opportunities for Improvement 7.3.1 Utilizing External Information and Contexts 7.3.2 Providing Flexible Visual Feedback 7.4 Expanding Audiences of OmniTrack 7.4.1 Supporting Clinical Contexts 7.4.2 Supporting Self-Experimenters 7.5 Limitations CHAPTER 8. Conclusion 8.1 Summary of the Approaches 8.2 Summary of Contributions 8.2.1 Artifact Contributions 8.2.2 Empirical Research Contributions 8.3 Future Work 8.3.1 Understanding the Long-term E_ect of OmniTrack 8.3.2 Utilizing External Information and Contexts 8.3.3 Extending the Input Modality to Lower the Capture Burden 8.3.4 Customizable Visual Feedback 8.3.5 Community-Driven Tracker Sharing 8.3.6 Supporting Multiphase Study Design 8.4 Final Remarks APPENDIX A. Study Material for Evaluations of the OmniTrack App A.1 Task Instructions for Usability Study A.2 The SUS (System Usability Scale) Questionnaire A.3 Screening Questionnaire for Deployment Study A.4 Exit Interview Guide for Deployment Study A.5 Deployment Participant Information APPENDIX B Study Material for Productivity Diary Study B.1 Recruitment Screening Questionnaire B.2 Exit Interview Guide Abstract (Korean)Docto

    Using Workshops to Improve Security in Software Development Teams

    Get PDF
    Though some software development teams are highly effective at delivering security, others either do not care or do not have access to security experts to teach them how. Unfortunately, these latter teams are still responsible for the security of the systems they build: systems that are ever more important to ever more people. Yet many, perhaps most, security problems can be prevented with careful design, construction and configuration of the software and systems involved, so software developers have a major contribution to make. This research investigated how to help teams of software developers achieve better security. An initial qualitative survey of 15 secure software development professionals highlighted a range of security assurance and motivation techniques suitable for teams of developers, and emphasised the human interaction aspects. A further quantitative survey of 330 successful Android developers then identified a baseline of current security practices in software development. Based on these surveys, the author created an intervention package to help software developers. Action Research techniques were used to trial and improve it in two one-year cycles with a total of 19 development teams in 11 different organisations. The later development of the package concentrated on empowering the developers involved, and reducing the involvement required from the researchers. By proving that a set of structured workshops can have an impact on the security performance of a team for a reasonable cost and without the support of security professionals, this research offers a powerful means to enhance development security in the UK, creating more secure software and systems for all users

    A survey of app store analysis for software engineering

    Get PDF
    App Store Analysis studies information about applications obtained from app stores. App stores provide a wealth of information derived from users that would not exist had the applications been distributed via previous software deployment methods. App Store Analysis combines this non-technical information with technical information to learn trends and behaviours within these forms of software repositories. Findings from App Store Analysis have a direct and actionable impact on the software teams that develop software for app stores, and have led to techniques for requirements engineering, release planning, software design, security and testing. This survey describes and compares the areas of research that have been explored thus far, drawing out common aspects, trends and directions future research should take to address open problems and challenges

    Quantified vehicles: data, services, ecosystems

    Get PDF
    Advancing digitalization has shown the potential of so-called Quantified Vehicles for gathering valuable sensor data about the vehicle itself and its environment. Consequently, (vehicle) Data has become an important resource, which can pave the way to (Data-driven) Services. The (Data-driven Service) Ecosystem of actors that collaborate to ultimately generate services, has only shaped up in recent years. This cumulative dissertation summarizes the author's contributions and includes a synopsis as well as 14 peer-reviewed publications, which contribute to answer the three research questions.Die Digitalisierung hat das Potenzial fรผr Quantified Vehicles aufgezeigt, um Sensordaten รผber das Fahrzeug selbst und seine Umgebung zu sammeln. Folglich sind (Fahrzeug-)Daten zu einer wichtigen Ressource der Automobilindustrie geworden, da sie auch (datengetriebene) Services ermรถglichen. Es bilden sich ร–kosysteme von Akteuren, die zusammenarbeiten, um letztlich Services zu generieren. Diese kumulative Dissertation fasst die Beitrรคge des Autors zusammen und enthรคlt eine Synopsis sowie 14 begutachtete Verรถffentlichungen, die zur Beantwortung der drei Forschungsfragen beitragen

    Harnessing the power of the general public for crowdsourced business intelligence: a survey

    Get PDF
    International audienceCrowdsourced business intelligence (CrowdBI), which leverages the crowdsourced user-generated data to extract useful knowledge about business and create marketing intelligence to excel in the business environment, has become a surging research topic in recent years. Compared with the traditional business intelligence that is based on the firm-owned data and survey data, CrowdBI faces numerous unique issues, such as customer behavior analysis, brand tracking, and product improvement, demand forecasting and trend analysis, competitive intelligence, business popularity analysis and site recommendation, and urban commercial analysis. This paper first characterizes the concept model and unique features and presents a generic framework for CrowdBI. It also investigates novel application areas as well as the key challenges and techniques of CrowdBI. Furthermore, we make discussions about the future research directions of CrowdBI

    Enhancing access to socioeconomic development information using mobile phone applications in rural Zimbabwe: the case of Matabeleland South Province.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Mobile phone access has grown exponentially, transforming access to information and communication in Africa. Mobile phone penetration has increased dramatically across the urban-rural, rich-poor and literate-illiterate divides, which other technologies failed to bridge. The number of mobile phone subscriptions grew astronomically, from less than two million in 1998 to more than 620 million subscribers in Africa (Carmody, 2012). Internet users grew 85-fold from 4.5m users in 2000 to over 388m users in Africa at a rate higher than any other region (Internetworldstas, 2018). Global mobile app downloads have reached 175 billion in 2017, generating more than $85 billion, yet most African countries possess an insignificant share of this, due to low literacy levels, low economic opportunities and an infrastructure that is still developing (The Guardian, 2014; Perez, 2018). The growing presence of mobile phones must be harnessed to enhance access to socioeconomic information, in order to improve standards of life in the global south. Scholars and communication enthusiasts have argued that simply providing access to the internet, without considering the relevance of content, will not change the fortunes of rural communities (Internet.org, 2014; GSMA, 2015). There is the need to provide localised and relevant content โ€“ such as local news, market prices and bus timetables โ€“ to these communities. This research resonates with Goal 9 of the Sustainable Development Goals, which seeks to increase access to information and communication technology, and provide universal and affordable access to the internet in least developed countries by 2020 (UN, 2016). In Zimbabwe, radio and television are basic technologies used for disseminating socioeconomic information, yet most of the rural communities have no access to radio and television signals, 37 years after independence. Rural mobile phone ownership is about 80%, and broadband penetration is 46.5% (ITU, 2013). In addition, Zimbabweโ€™s average rural literacy is about 90%. These two factors โ€“ high rural literacy levels and high rural mobile phone ownership โ€“ motivated the researcher to develop a mobile phone application prototype that could be utilised by rural communities to enhance their access to socioeconomic development information that could, in turn, anchor sustainable development. The mobile phone application prototype has the potential to provide a new platform for accessing socioeconomic development information in the rural areas of Zimbabwe, including information on agriculture, health, community activities, education and the markets, plus local and national news. These can all promote sustainable development. The study followed a seven-cycle design science research methodology, from problem identification to communicating the utility of the aertefact which guided the development of the mobile phone application (Hevner, 2007). The development of the prototype followed a user-centred design, as well user experience, where high-fidelity prototypes were presented to participants selected through a random sample to be part of the development process. This process is iterative, incorporating user feedback and redesign of the prototype until the users and developers agree on the design. After designing the prototype, participants were randomly selected to evaluate the mobile phone application prototype using an adapted TAM2, whose main constructs relate to perceived usefulness and ease of use (Davis, 1989)

    Using mobile technology to foster autonomy among language learners

    Get PDF
    PhD ThesisMuch has been written about the value of Learner autonomy in language teaching and learning as it is believed to enhance studentsโ€™ opportunities of success, enable life-long learning, and increase motivation. Extensive research has been dedicated to the investigation of different ways of fostering learner autonomy in language learning and teaching. However, it is not easy to encourage learners to be more independent, motivated, and committed, especially in a teacher-centred educational context. Therefore, this study seeks to explore how learner autonomy can be encouraged in support of language learning at a University in Saudi Arabia by incorporating the use of tablet devices into a language course. It is necessary to establish whether the iPad and iPad-like devices can contribute to developing student autonomy in language learning. More specifically, the study attempts to explore whether the multi-modal functionality and affordances of the iPad, when used in a Mobile Assisted Language Learning environment as part of a teacher-guided EFL (English for Foreign Learners) course, can encourage and motivate students to become more independent and take control over their learning. The study was carried out in the context of a 12-week deployment of the iPad device in the Community College at Imam Abdulrahman Bin Faisal University (Previously Dammam University) with a group of 21 Saudi university students. Data was gathered from questionnaires, focus group interview, student diaries, think aloud protocol, and online tracker. The findings indicate that students used a wide range of cognitive, metacognitive, and social strategies when working with the iPad, and there was a statistically significant increase in studentsโ€™ reported use of language learning strategies by the end of the project. The study also provides evidence that the use of the iPad when integrated carefully into a language course, and with the teacherโ€™s instruction, can have positive effects on studentsโ€™ attitude and learning. There is evidence that these effects extended beyond the end of the course, as post โ€“course interviews suggest that students continued to develop certain types of autonomous behaviour. They displayed a desire to continue to learn English despite the difficulties they encountered in the course. In addition, most students planned to do more practice outside classroom, collaborate with other students, and reflect on their personal beliefs about language learning. Based on these findings, there seem to be clear benefits to integrating the iPad into language courses

    iPad use in fieldwork: formal and informal use to enhance pedagogical practice in a bring your own technology world

    Get PDF
    We report on use of iPads (and other IOS devices) for student fieldwork use and as electronic field notebooks and to promote active. We have used questionnaires and interviews of tutors and students to elicit their views and technology and iPad use for fieldwork. There is some reluctance for academic staff to relinquish paper notebooks for iPad use, whether in the classroom or on fieldwork, as well as use them for observational and measurement purposes. Students too are largely unaware of the potential of iPads for enhancing fieldwork. Apps can be configured for a wide variety of specific uses that make iPads useful for educational as well as social uses. Such abilities should be used to enhance existing practice as well as make new functionality. For example, for disabled students who find it difficult to use conventional note taking. iPads can be used to develop student self-directed learning and for group contributions. The technology becomes part of the studentsโ€™ personal learning environments as well as at the heart of their knowledge spaces โ€“ academic and social. This blurring of boundaries is due to iPadsโ€™ usability to cultivate field use, instruction, assessment and feedback processes. iPads can become field microscopes and entries to citizen science and we see the iPad as the main โ€˜computingโ€™ device for students in the near future. As part of the Bring Your Own Technology/Device (BYOD) the iPad has much to offer although, both staff and students need to be guided in the most effective use for self-directed education via development of Personal Learning Environments. A more student-oriented pedagogy is suggested to correspond to the increasing use of tablet technologies by student
    • โ€ฆ
    corecore