2,964 research outputs found

    A Study on Graph Coloring and Digraph Connectivity

    Get PDF
    This dissertation focuses on coloring problems in graphs and connectivity problems in digraphs. We obtain the following advances in both directions.;1. Results in graph coloring. For integers k,r \u3e 0, a (k,r)-coloring of a graph G is a proper coloring on the vertices of G with k colors such that every vertex v of degree d( v) is adjacent to vertices with at least min{lcub}d( v),r{rcub} different colors. The r-hued chromatic number, denoted by chir(G ), is the smallest integer k for which a graph G has a (k,r)-coloring.;For a k-list assignment L to vertices of a graph G, a linear (L,r)-coloring of a graph G is a coloring c of the vertices of G such that for every vertex v of degree d(v), c(v)∈ L(v), the number of colors used by the neighbors of v is at least min{lcub}dG(v), r{rcub}, and such that for any two distinct colors i and j, every component of G[c --1({lcub}i,j{rcub})] must be a path. The linear list r-hued chromatic number of a graph G, denoted chiℓ L,r(G), is the smallest integer k such that for every k-list L, G has a linear (L,r)-coloring. Let Mad( G) denotes the maximum subgraph average degree of a graph G. We prove the following. (i) If G is a K3,3-minor free graph, then chi2(G) ≤ 5 and chi3(G) ≤ 10. Moreover, the bound of chi2( G) ≤ 5 is best possible. (ii) If G is a P4-free graph, then chir(G) ≤q chi( G) + 2(r -- 1), and this bound is best possible. (iii) If G is a P5-free bipartite graph, then chir( G) ≤ rchi(G), and this bound is best possible. (iv) If G is a P5-free graph, then chi2(G) ≤ 2chi(G), and this bound is best possible. (v) If G is a graph with maximum degree Delta, then each of the following holds. (i) If Delta ≥ 9 and Mad(G) \u3c 7/3, then chiℓL,r( G) ≤ max{lcub}lceil Delta/2 rceil + 1, r + 1{rcub}. (ii) If Delta ≥ 7 and Mad(G)\u3c 12/5, then chiℓ L,r(G)≤ max{lcub}lceil Delta/2 rceil + 2, r + 2{rcub}. (iii) If Delta ≥ 7 and Mad(G) \u3c 5/2, then chi ℓL,r(G)≤ max{lcub}lcei Delta/2 rceil + 3, r + 3{rcub}. (vi) If G is a K 4-minor free graph, then chiℓL,r( G) ≤ max{lcub}r,lceilDelta/2\rceil{rcub} + lceilDelta/2rceil + 2. (vii) Every planar graph G with maximum degree Delta has chiℓL,r(G) ≤ Delta + 7.;2. Results in digraph connectivity. For a graph G, let kappa( G), kappa\u27(G), delta(G) and tau( G) denote the connectivity, the edge-connectivity, the minimum degree and the number of edge-disjoint spanning trees of G, respectively. Let f(G) denote kappa(G), kappa\u27( G), or Delta(G), and define f¯( G) = max{lcub}f(H): H is a subgraph of G{rcub}. An edge cut X of a graph G is restricted if X does not contain all edges incident with a vertex in G. The restricted edge-connectivity of G, denoted by lambda2(G), is the minimum size of a restricted edge-cut of G. We define lambda 2(G) = max{lcub}lambda2(H): H ⊂ G{rcub}.;For a digraph D, let kappa;(D), lambda( D), delta--(D), and delta +(D) denote the strong connectivity, arc-strong connectivity, minimum in-degree, and out-degree of D, respectively. For each f ∈ {lcub}kappa,lambda, delta--, +{rcub}, define f¯(D) = max{lcub} f(H): H is a subdigraph of D{rcub}.;Catlin et al. in [Discrete Math., 309 (2009), 1033-1040] proved a characterization of kappa\u27(G) in terms of tau(G). We proved a digraph version of this characterization by showing that a digraph D is k-arc-strong if and only if for any vertex v in D, D has k-arc-disjoint spanning arborescences rooted at v. We also prove a characterization of uniformly dense digraphs analogous to the characterization of uniformly dense undirected graphs in [Discrete Applied Math., 40 (1992) 285--302]. (Abstract shortened by ProQuest.)

    Injective colorings of sparse graphs

    Get PDF
    Let mad(G)mad(G) denote the maximum average degree (over all subgraphs) of GG and let χi(G)\chi_i(G) denote the injective chromatic number of GG. We prove that if mad(G)5/2mad(G) \leq 5/2, then χi(G)Δ(G)+1\chi_i(G)\leq\Delta(G) + 1; and if mad(G)<42/19mad(G) < 42/19, then χi(G)=Δ(G)\chi_i(G)=\Delta(G). Suppose that GG is a planar graph with girth g(G)g(G) and Δ(G)4\Delta(G)\geq 4. We prove that if g(G)9g(G)\geq 9, then χi(G)Δ(G)+1\chi_i(G)\leq\Delta(G)+1; similarly, if g(G)13g(G)\geq 13, then χi(G)=Δ(G)\chi_i(G)=\Delta(G).Comment: 10 page

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Injective colorings of graphs with low average degree

    Full text link
    Let \mad(G) denote the maximum average degree (over all subgraphs) of GG and let χi(G)\chi_i(G) denote the injective chromatic number of GG. We prove that if Δ4\Delta\geq 4 and \mad(G)<\frac{14}5, then χi(G)Δ+2\chi_i(G)\leq\Delta+2. When Δ=3\Delta=3, we show that \mad(G)<\frac{36}{13} implies χi(G)5\chi_i(G)\le 5. In contrast, we give a graph GG with Δ=3\Delta=3, \mad(G)=\frac{36}{13}, and χi(G)=6\chi_i(G)=6.Comment: 15 pages, 3 figure

    Distance-two coloring of sparse graphs

    Full text link
    Consider a graph G=(V,E)G = (V, E) and, for each vertex vVv \in V, a subset Σ(v)\Sigma(v) of neighbors of vv. A Σ\Sigma-coloring is a coloring of the elements of VV so that vertices appearing together in some Σ(v)\Sigma(v) receive pairwise distinct colors. An obvious lower bound for the minimum number of colors in such a coloring is the maximum size of a set Σ(v)\Sigma(v), denoted by ρ(Σ)\rho(\Sigma). In this paper we study graph classes FF for which there is a function ff, such that for any graph GFG \in F and any Σ\Sigma, there is a Σ\Sigma-coloring using at most f(ρ(Σ))f(\rho(\Sigma)) colors. It is proved that if such a function exists for a class FF, then ff can be taken to be a linear function. It is also shown that such classes are precisely the classes having bounded star chromatic number. We also investigate the list version and the clique version of this problem, and relate the existence of functions bounding those parameters to the recently introduced concepts of classes of bounded expansion and nowhere-dense classes.Comment: 13 pages - revised versio
    corecore